Application of Phase Change Materials to Thermal Control of Electronic Modules: A Computational Study

1997 ◽  
Vol 119 (1) ◽  
pp. 40-50 ◽  
Author(s):  
D. Pal ◽  
Y. K. Joshi

A computational model is developed to predict the performance of phase change materials(PCMs) for passive thermal control of electronic modules during transient power variations or following an active cooling system failure. Two different ways of incorporating PCM in the module are considered. One is to place a laminate of PCM outside the multichip module, and the other is to place the PCM laminate between the substrate and the cold plate. Two different types of PCMs are considered. One is n-Eicosene, which is an organic paraffin, and the other one is a eutectic alloy of Bi/Pb/Sn/In. Computations are performed in three dimensions using a finite volume method. A single domain fixed grid enthalpy porosity method is used to model the effects of phase change. Effects of natural convection on the performance of PCM are also examined. Results are presented in the form of time-wise variations of maximum module temperature, isotherm contours, velocity vectors, and melt front locations. Effects of PCM laminate thickness and power levels are studied to assess the amount of PCM required for a particular power level. The results show that the PCMs are an effective option for passive cooling of high density electronic modules for transient periods.

Author(s):  
Emir Özkökdemir ◽  
Yener Usul

Abstract Phase change materials (PCMs) are some kind of energy storage systems which have widely been used in many industries such as electronic equipment, heat pumps, buildings, solar panels and spacecraft thermal control applications. Two main outstanding features of PCMs are having large amount of energy storage capacity at low temperature difference between heat source-sink pair and being remained at almost constant temperature during phase change process. In this study, thermal performance of PCMs for passive cooling of electronic modules with heating components is investigated numerically. A commercially available solid-solid PCM is employed. Effects of different packaging types for PCM on thermal performance of the electronics board are examined. Three different packaging types are considered; bulk PCM inside a rectangular enclosure, a rectangular enclosure having rectangular fins with PCM inside and a rectangular foam structure. All of the enclosures containing the PCM are made up of aluminum. All of the PCM packages are placed over the heating component of the electronics board in the same environmental condition. Computations are performed in three dimensions using a conduction based finite element method. Computational method is verified by time-dependent temperature measurements of the PCM modules. Results for different cases are presented comparatively.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


Author(s):  
Sangeetha Krishnamoorthi ◽  
L. Prabhu ◽  
Glen Kuriakose ◽  
Dave Jose lewis ◽  
J. Harikrishnan

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 284 ◽  
Author(s):  
Nadezhda S. Bondareva ◽  
Nikita S. Gibanov ◽  
Mikhail A. Sheremet

The cooling of electronic elements is one of the most important problems in the development of architecture in electronic technology. One promising developing cooling method is heat sinks based on the phase change materials (PCMs) enhanced by nano-sized solid particles. In this paper, the influence of the PCM’s physical properties and the concentration of nanoparticles on heat and mass transfer inside a closed radiator with fins, in the presence of a source of constant volumetric heat generation, is analyzed. The conjugate problem of nano-enhanced phase change materials (NePCMs) melting is considered, taking into account natural convection in the melt under the impact of the external convective cooling. A two-dimensional problem is formulated in the non-primitive variables, such as stream function and vorticity. A single-phase nano-liquid model is employed to describe the transport within NePCMs.


Sign in / Sign up

Export Citation Format

Share Document