scholarly journals Computational experiment of the thin-film electroluminescent display devices applicability in aviation

2021 ◽  
Vol 2056 (1) ◽  
pp. 012054
Author(s):  
D A Evsevichev ◽  
O V Maksimova ◽  
M K Samokhvalov

Abstract The development of methods and means of testing the applicability of thin-film electroluminescent indicator devices as displays in aircraft is carried out. Thin-film electroluminescent displays are used in equipment and systems that require high image quality and reliability, as well as a long service life of the devices. The result of the performed work is the ExpAT program, which allows to carry out a computational experiment to test of the applicability of the TFEL indicator devices in aeronautical engineering. As a result of the computational experiment, variants of structures of thin-film emitting structures that meet the operating conditions of indicators in avionics are shown.

Author(s):  
F. A. Heckman ◽  
E. Redman ◽  
J.E. Connolly

In our initial publication on this subject1) we reported results demonstrating that contrast is the most important factor in producing the high image quality required for reliable image analysis. We also listed the factors which enhance contrast in order of the experimentally determined magnitude of their effect. The two most powerful factors affecting image contrast attainable with sheet film are beam intensity and KV. At that time we had only qualitative evidence for the ranking of enhancing factors. Later we carried out the densitometric measurements which led to the results outlined below.Meaningful evaluations of the cause-effect relationships among the considerable number of variables in preparing EM negatives depend on doing things in a systematic way, varying only one parameter at a time. Unless otherwise noted, we adhered to the following procedure evolved during our comprehensive study:Philips EM-300; 30μ objective aperature; magnification 7000- 12000X, exposure time 1 second, anti-contamination device operating.


Author(s):  
O. B. Berdnik ◽  
I. N. Tsareva ◽  
M. K. Chegurov

This article deals with structural features and characteristic changes that affect the mechanical characteristics after different service life in real conditions using the example of the blades of the 4th stage of turbine GTE-45-3 with an operating time of 13,000 to 100,000 hours. To study the change in the state of the material under different operating conditions, determine the degree of influence of heat treatment on the regeneration of the microstructure, and restore the mechanical characteristics of the alloy after different periods of operation, non-standard methods were used: relaxation tests on miniature samples to determine the physical yield strength and microplasticity limit and quantitative evaluation of the plasticity coefficient of the material from experimental values of hardness, which allow us to identify the changes occurring in the microvolumes of the material and predict the performance of the product as a whole.


2021 ◽  
Vol 52 (S1) ◽  
pp. 643-646
Author(s):  
Yang Guobo ◽  
Qiu Haijun ◽  
Huang Weiyun ◽  
Yang Yuqing ◽  
Long Yue ◽  
...  

2019 ◽  
Vol 114 ◽  
pp. 04005
Author(s):  
Ngo Van Cuong ◽  
Lidiia I. Kovernikova

The parameters of electrical network modes often do not meet the requirements of Russian GOST 32144-2013 and the guidelines of Vietnam. In the actual operating conditions while there is the non-sinusoidal mode in electrical networks voltage and current harmonics are present. Harmonics result in overheating and damage of power transformers since they cause additional active power losses. Additional losses lead to the additional heat release, accelerating the process of insulating paper, transformer oil and magnetic structure deterioration consequently shortening the service life of a power transformer. In this regard there arises a need to develop certain scientific methods that would help demonstrate that low power quality, for instance could lead to a decrease in the electrical equipment service life. Currently we see a development of automated systems for continuous monitoring of power quality indices and mode parameters of electrical networks. These systems could be supplemented by characteristics calculating programs that give out a warning upon detection of the adverse influence of voltage and current harmonics on various electrical equipment of both electric power providers and electric power consumers. A software program presented in the article may be used to predict the influence of voltage and current harmonics on power transformers.


2011 ◽  
Author(s):  
Carole Thiebaut ◽  
Christophe Latry ◽  
Roberto Camarero ◽  
Grégory Cazanave

2009 ◽  
Vol 114 (3) ◽  
pp. 1511-1522 ◽  
Author(s):  
Shu-Hsien Huang ◽  
George J. Jiang ◽  
Der-Jang Liaw ◽  
Chi-Lan Li ◽  
Chien-Chieh Hu ◽  
...  

Author(s):  
K.O. Kobzev ◽  
◽  
S.A. Vyalov ◽  
E.S. Bozhko ◽  
I.A. Zolotuhina ◽  
...  

This article deals with the problem of operating conditions of guide moving crossbars of hydraulic presses. Based on the study of hydraulic press operation processes, the need to develop and implement measures to ensure reliable and trouble-free operation of the press was identified. The conclusion justifies the idea that if these technical solutions are implemented, the service life of hydraulic presses will increase


2001 ◽  
Author(s):  
K. Bruce ◽  
R. Richards ◽  
D. Bahr ◽  
C. Richards

Abstract Work toward the development of a thin-film piezoelectric membrane generator is presented. The membrane generator is the central component of a new MEMS power generation system, the P3 micro power system. The P3 micro power system is based on a two-dimensional, modular architecture, in which the individual generic modules or unit cells each have all the functions of an engine integrated. Each unit cell is an external combustion engine, in which thermal power is converted to mechanical power through the use of a novel thermodynamic cycle that approaches the ideal vapor Carnot cycle. Mechanical power is converted into electrical power through the use of a thin-film piezoelectric membrane generator. This paper introduces the concept of the thin-film piezoelectric membrane generator, and describes its design and fabrication. Results of a study to characterize the performance of the piezoelectric membrane generator under expected operating conditions are presented. Current prototypes of the membrane generator are shown to be capable of producing a peak power of 0.1 milliWatts at a voltage of 0.5 Volts.


2015 ◽  
Vol 70 ◽  
pp. 34-39 ◽  
Author(s):  
Hedda Malm ◽  
Anders Gamfeldt ◽  
Rickard Marcks von Würtemberg ◽  
Dan Lantz ◽  
Carl Asplund ◽  
...  

2016 ◽  
Vol 73 (10) ◽  
pp. 2361-2369 ◽  
Author(s):  
M. El-Sayed ◽  
M. Ramzi ◽  
R. Hosny ◽  
M. Fathy ◽  
Th. Abdel Moghny

A novel amorphous carbon thin film (ACTF) was prepared by hydrolyzing wood sawdust and delignificating the residue to obtain cellulose mass that was subjected to react with cobalt silicate nanoparticle as a catalyst under the influence of sudden concentrated sulfuric acid addition at 23 °C. The novel ACTF was obtained in the form of thin films like graphene sheets having winding surface. The prepared ACTF was characterized by Fourier-transform infrared spectrometer, transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET). The adsorption capacity of ACTF to remove oil from synthetic produced water was evaluated using the incorporation of Thomas and Yoon–Nelson models. The performance study is described through the breakthrough curves concept under relevant operating conditions such as column bed heights (3.8, 5 and 11 mm) and flow rate (0.5, 1 and 1.5 mL.min−1). It was found that the oil uptake mechanism is favoring higher bed height. Also, the highest bed capacity of 700 mg oil/g ACTF was achieved at 5 mm bed height, and 0.5 mL.min−1 flow rate. The results of breakthrough curve for oil adsorption was best described using the Yoon–Nelson model. Finally, the results illustrate that ACTF could be utilized effectively for oil removal from synthetic produced water in a fixed-bed column system.


Sign in / Sign up

Export Citation Format

Share Document