scholarly journals On the Application of Impeller in Multi Axis CNC Machine Tools

2021 ◽  
Vol 2066 (1) ◽  
pp. 012113
Author(s):  
Weiwen Ye

Abstract Multi axis CNC machine tool has good linkage processing effect. Through the application of integral impeller in CNC machine tools, to improve the adaptability of CNC machine tools to complex surface processing parts, to improve the accuracy of multi axis CNC machine tools. The first part of this paper introduces the integral impeller and its machining characteristics; the second part introduces the basic NC machining process of integral impeller; the third part discusses the application of impeller in multi axis CNC machine tools from the creation of guide track, the simulation of integral impeller, software processing and generation. The purpose is to provide some reference for the processing and production of integral impeller.

2010 ◽  
Vol 455 ◽  
pp. 621-624
Author(s):  
X. Li ◽  
Y.Y. Yu

Because of the practical requirement of real-time collection and analysis of CNC machine tool processing status information, we discuss the necessity and feasibility of applying ubiquitous sensor network(USN) in CNC machine tools by analyzing the characteristics of ubiquitous sensor network and the development trend of CNC machine tools, and application of machine tool thermal error compensation based on USN is presented.


Author(s):  
Xun Xu

The introduction of CNC machines has radically changed the manufacturing industry. Curves are as easy to cut as straight lines, complex 3-D structures are relatively easy to produce, and the number of machining steps that required human action has dramatically reduced. With the increased automation of manufacturing processes with CNC machining, considerable improvements in consistency and quality can be achieved. CNC automation reduced the frequency of errors and provided CNC operators with time to perform additional tasks. CNC automation also allows for more flexibility in the way parts are held in the manufacturing process and the time required to change the machine to produce different components. In a production environment, a series of CNC machines may be combined into one station, commonly called a “cell”, to progressively machine a part requiring several operations. CNC controller is the “brain” of a CNC machine, whereas the physical configuration of the machine tool is the “skeleton”. A thorough understanding of the physical configuration of a machine tool is always a priority for a CNC programmer as well as the CNC machine tool manufacturers. This chapter starts with a historical perspective of CNC machine tools. Two typical types of CNC machine tools (i.e. vertical and horizontal machining centres) are first discussed. Tooling systems for a CNC machine tool are integral part of a CNC system and are therefore elaborated. Also discussed are the four principal elements of a CNC machine tool. They are machine base, machine spindle, spindle drive, and slide drive. What letter should be assigned to a linear or rotary axis and what if a machine tool has two sets of linear axes? These questions are answered later in the chapter. In order for readers to better comprehend the axis and motion designations, a number of machine tool schematics are given.


2016 ◽  
Vol 842 ◽  
pp. 303-310 ◽  
Author(s):  
Widyanti Kwintarini ◽  
Agung Wibowo ◽  
Yatna Yuwana Martawirya

The aim of this paper overviews about to find out the errors that come from three axis CNC vertical milling machine. The errors come from, the CNC milling machine can be modelled into mathematical models and later on these error models will be used to analyse the errors in the measured data. Many errors from CNC machine tools have given significant effects toward the accuracy and repeatability of manufacturing process. There are two error sources come from CNC machine tools such as tool deflection and thermal distortions of machine tool structure. These errors later on will contribute to result in the geometrical deviations of moving axis in CNC vertical milling machine. Geometrical deviations of moving axis such as linear positioning errors, roll, pitch and yaw can be designated as volumetric errors in three axis machine tool. Geometrical deviations of moving axises happen at every axis in three axis CNC vertical milling machine. Geometrical deviations of moving axises in linear and angular movement has the amount of errors up to twenty one errors. Moreover, this geometrical errors play the major role in the total amount of errors and for that particular reason extra attention towards the geometrical deviation errors will be needed along machining process. Each of geometrical error of three axes vertical machining center is modeled using a homogeneous transformation matrix (HTM). The developed mathematical model is used to calculate geometrical errors at each axis and to predict the resultant error vector at the interface of machine tool and workpiece for error compensation.


2010 ◽  
Vol 44-47 ◽  
pp. 557-561 ◽  
Author(s):  
Chen Sheng Wang ◽  
Tjamme Wiegers ◽  
Joris S.M. Vergeest

Improving the machining efficiency of CNC machine tools by introducing intelligence is now gaining more attention from both researchers and entrepreneurs. Based on the assessment of existing strategy of intelligent machine tool design, an implementation and preliminary evaluation of an intelligent CNC lathe has been reported in this paper. Techniques discussed in this paper are expected to benefit CNC machine tool researchers and designers in terms of the development of intelligent CNC machine tools.


2014 ◽  
Vol 494-495 ◽  
pp. 448-451
Author(s):  
Jia Zheng Wei

The 5-DOF CNC machine tools motion error, motion space simulation and interference are analyzed. The tool machine dynamic and static interference, trajectory planning are discussed, which realizes the parts manufacturability and processing rationality.


2021 ◽  
Vol 11 (24) ◽  
pp. 11770
Author(s):  
Tao Sun ◽  
Wen Wang ◽  
Zhanfeng Chen ◽  
Yewen Zhu ◽  
Kaifei Xu ◽  
...  

Due to the errors of the servo system and the errors of the ball screw drive system, the positioning errors inevitably occur in the process of CNC machine tools. The measurement of traditional equipment is limited by a fixed measurement radius and a single degree of freedom, which can only be measured within a fixed plane. In this paper, four different positioning errors of CNC machine tools are first measured at full scale by using J-DBB (a modified double ball bar with one spherical joint connecting two bars) method. The J-DBB device uses a three-degree-of-freedom spherical joint as a connecting part, which realizes that the measurement radius can be continuously changed, and the measurement space is a spatial sphere. First, the principle of the J-DBB method is briefly introduced. Next, four typical positioning errors of CNC machine tools are analyzed and examined, which contain the uniform contraction error of ball screw and linear grating, periodic error of the ball screw and linear grating, interference of measurement devices error, and opposite clearance error. In the end, the trajectories of the CNC machine tool spindle with a single positioning error are simulated by using the J-DBB method. The results reveal that this method can be used for the positioning error of machine tools, which helps to better understand the spatial distribution of CNC machine tool errors and provides guidance for the reasonable selection of working areas to improve the machining accuracy of parts.


2014 ◽  
Vol 687-691 ◽  
pp. 22-25
Author(s):  
Chen Bo Zhao

With the rapid development of the mechanical and electrical industry, enterprises are increasingly concerned about the degree of precision CNC machine tools. The traditional CNC machine can only perform simple parts processing operations, gradually exposing the shortcomings of high precision parts. To solve this problem, in this paper, we propose that combined SPCE061A SCM and MASTER-K10S PLC, to improve the function and precision of CNC machine tool control systems, and promote the efficiency and reliability of industrial production.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3860
Author(s):  
Kamil Stateczny ◽  
Karol Miądlicki

The human-machine interfaces in modern CNC machine tools are not very intuitive and still based on archaic input systems, i.e., switches, handwheels, and buttons. This type of solution has two major drawbacks. The pushed button activates the movement only in one direction and is insensitive to the amount of the force exerted by the operator, which makes it difficult to move the machine axes at variable speeds. The paper proposes a novel and intuitive system of manual programming of a CNC machine tool based on a control lever with strain-gauge sensors. The presented idea of manual programming is aimed at eliminating the need to create a machining program and at making it possible to move the machine intuitively, eliminating mistakes in selecting directions and speeds. The article describes the concept of the system and the principle of operation of the control levers with force sensors. The final part of the work presents the experimental validation of the proposed system and a functionality comparison with the traditional CNC control.


2012 ◽  
Vol 510 ◽  
pp. 345-349 ◽  
Author(s):  
Xue Jun Nie

Feed servo system is an important part in CNC machine tool. In order to promote CNC machine tools precision, it is particularly important to enhance the control methods research on feed servo system. In this paper, different mathematical models of CNC machine tools feed servo system in different control modes are established, and their transfer functions are obtained, also the corresponding simulation models are constructed by using Simulink tools under MATLAB environment. Through simulating, the relationship between the systems parameters and the performance of servo system are obtained, some reliable theoretical basis can be achieved for improving and enhancing CNC machine tool servo system performance. Therefore some references for the performance optimization of feed servo system in CNC machine tool are provided.


2012 ◽  
Vol 271-272 ◽  
pp. 488-492
Author(s):  
Ji Ming Yan ◽  
Zhi Ping Guo ◽  
Hong Li Gao ◽  
Bei Bei Zheng ◽  
Yong Hong Dai ◽  
...  

This paper proposes to establish a CNC machine tool security system using artificial intelligence-based, and discusses the key technologies: the dynamic fuzzy neural network(DFNN), and based on this, describes an established security system of CNC machine tool.


Sign in / Sign up

Export Citation Format

Share Document