scholarly journals Design of Fuel Supply Curves for Aircraft Center of Gravity Balance Based on DCT Compression

2021 ◽  
Vol 2068 (1) ◽  
pp. 012016
Author(s):  
Yawen Wei ◽  
Bo Su ◽  
Xuru Wang ◽  
Zhen Li ◽  
Pengfei Wang ◽  
...  

Abstract The center of gravity (CG) has a significant influence on the controllability, stability, and fuel efficiency of the aircraft. For the aircraft with multiple fuel tanks, the CG position can be controlled by the fuel quality of different fuel tanks during flight. In this paper, an optimization method based on discrete cosine transform (DCT) compression is proposed to solve the optimization strategy of aircraft multi-tank fuel supply according to the current aircraft mission and engine working requirements. The transform coefficients of the low frequency components are used as design variables to represent the fuel supply curves. The improved KS function is proposed to deal with constraints. The numerical example is demonstrated to verify the effectiveness of the proposed method.

Author(s):  
Kwon-Hee Lee ◽  
Ji-In Heo

In order to achieve greater fuel efficiency and energy conservation, the reduction of weight and enhancement of the performance of structures has been sought. In general, there are two approaches to reducing structural weight. One of which is to use materials that are lighter than steel and the other is to redesign the structure. However, conventional structural optimization methods using gradient-based algorithm directly have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome these difficulties a metamodel-based optimization method is introduced in order to replace the true response by an approximate one. This research presents four case studies of structural design using a metamodel-based approximation model for weight reduction or performance enhancement.


2021 ◽  
Author(s):  
Wenjie Wang ◽  
Qifan Deng ◽  
Ji Pei ◽  
Jinwei Chen ◽  
Xingcheng Gan

Abstract Pressure fluctuation due to the rotor-stator interaction in turbomachinery is unavoidable, inducing strong vibration and even shortening the lifecycle. The investigation on optimization method of an industrial centrifugal pump was carried out to reduce the pressure fluctuation intensity. Considering the time-consuming transient calculation of unsteady pressure, a novel optimization strategy was proposed by discretizing design variables and genetic algorithm. Four highly related design parameters were chosen, and 40 transient sample cases were generated and simulated using an automatic simulation program. Furthermore, a modified discrete genetic algorithm (MDGA) was proposed to reduce the optimization cost by unsteady simulation. For the benchmark test, the proposed MDGA showed a great advantage over the original genetic algorithm in terms of searching speed and could deal with the discrete variables effectively. After optimization, an improvement in terms of the performance and stability of the inline pump was achieved.


Author(s):  
Masataka Yoshimura ◽  
Ryousuke Nomura

Abstract Designs of machine products routinely have so many characteristics to be evaluated that usual design optimization methods often result in an unsatisfactory local optimum solution. In order to overcome this problem, this paper proposes a design optimization method based on decomposition by substructuralization and subsequent hierarchical ordering, considering the both conflicting and cooperative relationships between the characteristics under evaluation. First of all, each characteristic is divided into simpler basic characteristics. The pool of design variables is also divided into smaller groups, according to specific design features. Next, the relationships between the basic characteristics and the divided design variables, as well as the relationships among the characteristics themselves, are systematically identified and clarified. Then, based on this clarification, and after setting a core characteristic derived from the primary performance characteristic for the product under consideration, an optimization strategy and detailed hierarchical optimization procedures are constructed. In this paper, the proposed method is applied to machine tool structures and transportation products.


Author(s):  
Mohammad Arabnia ◽  
Wahid Ghaly

This paper presents an effective and practical shape optimization strategy for turbine stages so as to minimize the adverse effects of three-dimensional flow features on the turbine performance. The optimization method combines a genetic algorithm (GA), with a Response Surface Approximation (RSA) of the Artificial Neural Network (ANN) type. During the optimization process, the individual objectives and constraints are approximated using ANN that is trained and tested using a few three-dimensional CFD flow simulations; the latter are obtained using the commercial package Fluent. The optimization objective is a weighted sum of individual objectives such as isentropic efficiency, streamwise vorticity and is penalized with a number of constraints. To minimize three-dimensional effects, the stator and rotor stacking curves are taken as the design variable. They are parametrically represented using a quadratic rational Bezier curve (QRBC) whose parameters are related to the blade lean, sweep and bow, which are used as the design variables. The described strategy was applied to single and multipoint optimization of the E/TU-3 turbine stage. This optimization strategy proved to be successful, flexible and practical, and resulted in an improvement of around 1% in stage efficiency over the turbine operating range with as low as 5 design variables. This improvement is attributed to the reduction in secondary flows, in stator hub choking, and in the transonic region and the associated flow separation.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


Author(s):  
Alparslan Emrah Bayrak ◽  
Yi Ren ◽  
Panos Y. Papalambros

A hybrid-electric vehicle powertrain architecture consists of single or multiple driving modes, i.e., connection arrangements among engine, motors and vehicle output shaft that determine distribution of power. While most architecture development work to date has focused primarily on passenger cars, interest has been growing in exploring architectures for special-purpose vehicles such as vans or trucks for civilian and military applications, whose weights or payloads can vary significantly during operations. Previous findings show that the optimal architecture can be sensitive to vehicle weight. In this paper we investigate architecture design under a distribution of vehicle weights, using a simulation-based design optimization strategy with nested supervisory optimal control and accounting for powertrain complexity. Results show that an architecture under a single load has significant differences and lower fuel efficiency than an architecture designed to work under a variety of loading scenarios.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2021 ◽  
Vol 12 (4) ◽  
pp. 78-97
Author(s):  
Hassiba Talbi ◽  
Mohamed-Khireddine Kholladi

In this paper, the authors propose an algorithm of hybrid particle swarm with differential evolution (DE) operator, termed DEPSO, with the help of a multi-resolution transform named dual tree complex wavelet transform (DTCWT) to solve the problem of multimodal medical image fusion. This hybridizing approach aims to combine algorithms in a judicious manner, where the resulting algorithm will contain the positive features of these different algorithms. This new algorithm decomposes the source images into high-frequency and low-frequency coefficients by the DTCWT, then adopts the absolute maximum method to fuse high-frequency coefficients; the low-frequency coefficients are fused by a weighted average method while the weights are estimated and enhanced by an optimization method to gain optimal results. The authors demonstrate by the experiments that this algorithm, besides its simplicity, provides a robust and efficient way to fuse multimodal medical images compared to existing wavelet transform-based image fusion algorithms.


Author(s):  
Kohei Yuge ◽  
Nobuhiro Iwai ◽  
Noboru Kikuchi

Abstract A topology optimization method for plates and shells subjected to plastic deformations is presented. The algorithms is based on the generalized layout optimization method invented by Bendsϕe and Kikuchi (1988), where an admissible design domain is assumed to be composed of microstructures with periodic cavities. The sizes of the cavities and the rotational angles of the microstructures are design variables which are optimized so as to minimize the applied work. The macroscopic material tensor for the porous material is numerically calculated by the homogenization method for the sensitivity analysis. In this paper, the method is applied to two-dimensional elasto-plastic problems. A database of the material tensor and its interpolation technique are presented. The algorithm is expanded into thin shells subjected to finite deformations. Several numerical examples are shown to demonstrate the effectiveness of these algorithms.


Sign in / Sign up

Export Citation Format

Share Document