scholarly journals Discrete Optimization on Unsteady Pressure Fluctuation of a Centrifugal Pump Using ANN and Modified GA

Author(s):  
Wenjie Wang ◽  
Qifan Deng ◽  
Ji Pei ◽  
Jinwei Chen ◽  
Xingcheng Gan

Abstract Pressure fluctuation due to the rotor-stator interaction in turbomachinery is unavoidable, inducing strong vibration and even shortening the lifecycle. The investigation on optimization method of an industrial centrifugal pump was carried out to reduce the pressure fluctuation intensity. Considering the time-consuming transient calculation of unsteady pressure, a novel optimization strategy was proposed by discretizing design variables and genetic algorithm. Four highly related design parameters were chosen, and 40 transient sample cases were generated and simulated using an automatic simulation program. Furthermore, a modified discrete genetic algorithm (MDGA) was proposed to reduce the optimization cost by unsteady simulation. For the benchmark test, the proposed MDGA showed a great advantage over the original genetic algorithm in terms of searching speed and could deal with the discrete variables effectively. After optimization, an improvement in terms of the performance and stability of the inline pump was achieved.

2021 ◽  
Vol 2137 (1) ◽  
pp. 012075
Author(s):  
Xi Feng ◽  
Yafeng Zhang

Abstract An improved immune genetic algorithm is used to design and optimize the wing structure parameters of a competition aircraft. According to the requirements of aircraft design, multi-objective optimization index is established. On this basis, the basic steps of using immune algorithm to optimize the main design parameters of aircraft wing structure are proposed, and the optimization of the wing parameters of a competition aircraft is used as an example for simulation calculation. The design variables in the optimization are the size of the wing components, and the optimization goal is to minimize the weight of the wing and the maximum deformation of the wing structure. Research shows that compared with traditional optimization methods; the improved immune genetic algorithm is a very effective optimization method. At the same time, a prototype is made to check the validity and feasibility of the design. Flight test results show that the optimization method is very effective. Although the method is proposed for competition aircraft, it is also applicable to other types of aircraft.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


Author(s):  
Cesar A. Cortes-Quiroz ◽  
Alireza Azarbadegan ◽  
Emadaldin Moeendarbary ◽  
Mehrdad Zangeneh

Numerical simulations and an optimization method are used to study the design of a planar T-micromixer with curved-shaped baffles in the mixing channel. The mixing efficiency and the pressure loss in the mixing channel have been evaluated for Reynolds number (Re) in the mixing channel in the range 1 to 250. A Mixing index (Mi) has been defined to quantify the mixing efficiency. Three geometric dimensions: radius of baffle, baffles pitch and height of the channel, are taken as design parameters, whereas the mixing index at the outlet section and the pressure loss in the mixing channel are the performance parameters used to optimize the micromixer geometry. To investigate the effect of design and operation parameters on the device performance, a systematic design and optimization methodology is applied, which combines Computational Fluid Dynamics (CFD) with an optimization strategy that integrates Design of Experiments (DOE), Surrogate modeling (SM) and Multi-Objective Genetic Algorithm (MOGA) techniques. The Pareto front of designs with the optimum trade-offs of mixing index and pressure loss is obtained for different values of Re. The micromixer can enhance mixing using the mechanisms of diffusion (lower Re) and convection (higher Re) to achieve values over 90%, in particular for Re in the order of 100 that has been found the cost-effective level for volume flow. This study applies a systematic procedure for evaluation and optimization of a planar T-mixer with baffles in the channel that promote transversal 3-D flow as well as recirculation secondary flows that enhance mixing.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


Author(s):  
Ethan Boroson ◽  
Samy Missoum

Nonlinear energy sinks (NESs) are promising devices for achieving passive vibration mitigation. Unlike traditional tuned mass dampers (TMDs), NESs, characterized by nonlinear stiffness properties, are not tuned to specific frequencies and absorb energy over a wider range of frequencies. NES efficiency is achieved through time-limited resonances, leading to the capture and dissipation of energy. However, the efficiency with which a NES dissipates energy is highly dependent on design parameters and loading conditions. In fact, it has been shown that a NES can exhibit a near-discontinuous efficiency. Thus, NES optimal design must account for uncertainty. The premise of the stochastic optimization method proposed is the segregation of efficiency regions separated by discontinuities in potentially high dimensional space. Clustering, support vector machine classification, and dedicated adaptive sampling constitute the basic techniques for maximizing the expected value of NES efficiency. Previous works depended solely on the ratio of energy dissipated by the NES for clustering. This work also includes information about the type of m:p resonances present. Three examples of optimization for the maximization of the expected value of efficiency for NESs subjected to transient loading are presented. The optimization accounts for both design variables with uncertainty and aleatory variables to characterize loading.


Author(s):  
Marcello Manna ◽  
Raffaele Tuccillo

The authors present an optimization strategy applied to decelerating cascades, with the combined use of a Navier-Stokes flow solver, correlation functions and a gradient based optimization method. In the initial stages of the searching the configurations proposed by the optimizer are mainly investigated with a semi-empirical analysis tool so to provide the flow solver with an improved initial guess. In the later stages the optimizer directly controls the flow solver. The objective of the optimization is two fold: determining the geometrical characteristics of the cascade yielding the best aerodynamic performances, and defining an appropriate cost function accounting for optimality conditions in a more general sense. The method is applied to blade profiles of the C4 type, whose geometrical characteristics are determined as a function of a few parameters (typically the camber angle, the maximum thickness to chord ratio, and the chord). By doing so the number of design parameters is substantially reduced, and the validity of the present methodology is correctly demonstrated, without loss of generality, with a limited computational effort. The examples deal with the design of decelerating cascades realizing considerable flow turning both in subsonic and transonic regimes and demonstrate the potential of the method.


2007 ◽  
Vol 339 ◽  
pp. 37-44 ◽  
Author(s):  
G.H. Khim ◽  
Chun Hong Park ◽  
H.S. Lee ◽  
S.W. Kim

This paper describes the vacuum-compatible air bearing designed with a cascaded exhaust scheme to minimize the leakage of air in a vacuum environment. The design of the air bearing, including the differential exhaust system, required great care because several design parameters, such as the number of exhaust stages, diameter and length of the exhaust tube, pumping speed and ultimate pressure of the vacuum pump, and seal length and gap greatly influenced the leakage of air and thus the degree of vacuum. A leakage analysis was performed to estimate the chamber pressure and an optimization method based on the genetic algorithm was proposed under several constraint conditions. The results showed that the degree of vacuum improved dramatically compared to the initial design, and that the distribution of the spatial design parameters and technical limit of the pumping speed were well achieved.


2014 ◽  
Vol 6 ◽  
pp. 159380 ◽  
Author(s):  
Ji Pei ◽  
Wenjie Wang ◽  
Shouqi Yuan ◽  
Jieyun Mao

Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC) based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.


2020 ◽  
Vol 36 (3) ◽  
pp. 347-360
Author(s):  
F. Colombo ◽  
F. Della Santa ◽  
S. Pieraccini

ABSTRACTIn this paper, a rectangular aerostatic bearing with multiple supply holes is optimised with a multiobjective optimisation approach. The design variables taken into account are the supply holes position, their number and diameter, the supply pressure, while the objective functions are the load capacity, the air consumption and the stiffness and damping coefficients. A genetic algorithm is applied in order to find the Pareto set of solutions. The novelty with respect to other optimisations which can be found in literature is that number and location of the supply holes is completely free and not associated to a pre-defined scheme. A vector x associated with the supply holes location is introduced in the design parameters and given in input to the optimizer.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Cao ◽  
Zhengwei Wang ◽  
Yexiang Xiao ◽  
Yongyao Luo

Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps.


Sign in / Sign up

Export Citation Format

Share Document