scholarly journals Stability and bifurcations of a discrete-time prey-predator system with constant prey refuge

2021 ◽  
Vol 2070 (1) ◽  
pp. 012068
Author(s):  
A George Maria Selvam ◽  
R Janagaraj ◽  
S Britto Jacob ◽  
D Vignesh

Abstract In ecology, by refuge an organism attains protection from predation by hiding in an area where it is unreachable or cannot simply be found. In population dynamics, once refuges are available, both prey-predator populations are expressively greater and meaningfully extra species can be sustained in the region. This examine the stability of a discrete predator prey model incorporating with constant prey refuge. Existence results and the stability conditions of the system are analyzed by obtaining fixed points and Jacobian matrix. The chaotic behavior of the system is discussed with bifurcation diagrams. Numerical experiments are simulated for the better understanding of the qualitative behavior of the considered model. Mathematics Subject Classification. [2010] : 37C25, 39A28, 39A30, 92D25.

2010 ◽  
Vol 15 (4) ◽  
pp. 473-491 ◽  
Author(s):  
A. K. Pal ◽  
G. P. Samanta

The present paper deals with the problem of a predator-prey model incorporating a prey refuge with disease in the prey-population. We assume the predator population will prefer only infected population for their diet as those are more vulnerable. Dynamical behaviours such as boundedness, permanence, local and global stabilities are addressed. We have also studied the effect of discrete time delay on the model. The length of delay preserving the stability is also estimated. Computer simulations are carried out to illustrate our analytical findings.


2016 ◽  
Vol 24 (02n03) ◽  
pp. 345-365 ◽  
Author(s):  
SUDIP SAMANTA ◽  
RIKHIYA DHAR ◽  
IBRAHIM M. ELMOJTABA ◽  
JOYDEV CHATTOPADHYAY

In this paper, we propose and analyze a predator–prey model with a prey refuge and additional food for predators. We study the impact of a prey refuge on the stability dynamics, when a constant proportion or a constant number of prey moves to the refuge area. The system dynamics are studied using both analytical and numerical techniques. We observe that the prey refuge can replace the predator–prey oscillations by a stable equilibrium if the refuge size crosses a threshold value. It is also observed that, if the refuge size is very high, then the extinction of the predator population is certain. Further, we observe that enhancement of additional food for predators prevents the extinction of the predator and also replaces the stable limit cycle with a stable equilibrium. Our results suggest that additional food for the predators enhances the stability and persistence of the system. Extensive numerical experiments are performed to illustrate our analytical findings.


2014 ◽  
Vol 24 (09) ◽  
pp. 1450106 ◽  
Author(s):  
Sourav Rana ◽  
Amiya Ranjan Bhowmick ◽  
Sabyasachi Bhattacharya

We study the impact of the Allee effect and prey refuge on the stability of a discrete time predator–prey system. We focus on the stability behavior of the system with the Allee effect in predator, prey and both populations. Based on the combination of analytical and numerical results, we observe that: (1) the Allee effect stabilizes the systems dynamics in a moderate value of prey refuge. (2) For a large fraction of prey refuge no significant improvement in stability is observed due to Allee effect. (3) Refuge may play an important role in managing the populations which are subject to the Allee effect. The population remains stable at an intermediate level of refuge parameter, whereas at relatively low and high refuge effect, prey exhibits chaotic oscillation. Such chaotic behavior is suppressed in the presence of Allee effect. The Allee mechanism and refuge are considered simultaneously on the populations and is shown to have a significant impact on the predator–prey dynamics that may be helpful in the conservation of endangered species.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. Vinoth ◽  
R. Sivasamy ◽  
K. Sathiyanathan ◽  
Bundit Unyong ◽  
Grienggrai Rajchakit ◽  
...  

AbstractIn this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2013 ◽  
Vol 76 (1) ◽  
pp. 635-647 ◽  
Author(s):  
Guangyao Tang ◽  
Sanyi Tang ◽  
Robert A. Cheke

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Caifeng Du

AbstractIn this paper, we consider a nonautonomous predator–prey model with Holling type II schemes and a prey refuge. By applying the comparison theorem of differential equations and constructing a suitable Lyapunov function, sufficient conditions that guarantee the permanence and global stability of the system are obtained. By applying the oscillation theory and the comparison theorem of differential equations, a set of sufficient conditions that guarantee the extinction of the predator of the system is obtained.


2018 ◽  
Vol 5 (1) ◽  
pp. 138-151 ◽  
Author(s):  
Jai Prakash Tripathi ◽  
Swati Tyagi ◽  
Syed Abbas

AbstractIn this paper, we study a predator-prey model with prey refuge and delay. We investigate the combined role of prey refuge and delay on the dynamical behaviour of the delayed system by incorporating discrete type gestation delay of predator. It is found that Hopf bifurcation occurs when the delay parameter τ crosses some critical value. In particular, it is shown that the conditions obtained for the Hopf bifurcation behaviour are sufficient but not necessary and the prey reserve is unable to stabilize the unstable interior equilibrium due to Hopf bifurcation. In particular, the direction and stability of bifurcating periodic solutions are determined by applying normal form theory and center manifold theorem for functional differential equations. Mathematically, we analyze the effect of increase or decrease of prey reserve on the equilibrium states of prey and predator species. At the end, we perform some numerical simulations to substantiate our analytical findings.


Sign in / Sign up

Export Citation Format

Share Document