scholarly journals Development of Ultra Strength Concrete

2021 ◽  
Vol 2070 (1) ◽  
pp. 012173
Author(s):  
Ganesh Naidu Gopu ◽  
Sri Durga Vara Prasad M ◽  
Swaroop Babu Mylavarpu ◽  
S Ankarao

Abstract Most superior cements delivered today contain materials notwithstanding Portland cement to help accomplish the compressive strength or solidness execution. These materials include fly ash, silica fume and ground-granulated blast furnace slag used discretely or in coalescence. Concurrently, chemical admixtures such as high-range di-hydrogen monoxide-reducers are needed to ascertain that the concrete is facile to convey, place and culminate. For high-strength cements, a blend of mineral and compound admixtures is almost consistently fundamental to guarantee accomplishment of the necessary strength. The Primer investigations have been done on concrete, Fine aggregate and coarse aggregate. The Blend Extent for M200 grade concrete is determined 1: 0.313: 1.463 by following the plan methodology given by ACI Strategy. By keeping up the w/c proportion as 0.25, the multi day Compressive strength, Flexural strength and Split elasticity of cement at 3% of silica fume and 1.5% of conplast have been accomplished as 163.33 N/mm2, 8.4 N/mm2& 9.5 N/mm2 separately. The variety of solidarity of cement with the variety of silica fume is appeared in bar outline. The strength of the concrete might be as yet expanded by decreasing the w/c proportion and expanding the level of silica fume

2012 ◽  
Vol 575 ◽  
pp. 100-103 ◽  
Author(s):  
Dong Sheng Shi ◽  
Ping Han ◽  
Zheng Ma ◽  
Jing Bo Wang

In this paper, the experiment about compressive strength of concrete using granulated blast furnace slag as fine aggregate was introduced. In this experiment, granulated blast furnace slag fine aggregates that were produced by two different steel factory and natural river sands that came from two different producing area were been used, and compressive strength of concrete for testing were four levels from ordinary strength level to high strength level. As results, the compressive strength of concrete that used granulated blast furnace slag as fine aggregate increase with increasing of concrete age as good as the concrete used nature river sand. At the early age of 3 days and 7days, whether water-cement ratio, the compressive strength of concrete using slag fine aggregate is always lower than concrete using river sand. At the long age of 91 days, the compressive strength of concrete using slag fine aggregate exceed the concrete using river sand when water-cement ratio was greater than 30%. The compressive strength of concrete using granulated blast furnace slag as fine aggregate can exceed 80N/mm2, the granulated blast furnace slag can be used in high-strength concrete.


Author(s):  
A. Chernil'nik ◽  
D. El'shaeva ◽  
Y. Zherebtsov ◽  
N. Dotsenko ◽  
M. Samofalova

In conditions of dense urban development and a variety of engineering and geological conditions, the use of concretes with a combined aggregate of a rationally selected composition will solve the existing problem of reducing the mass of reinforced concrete structures of buildings and structures and maintaining the required strength and deformability. In this paper, studies have been carried out on the choice of a rational formulation of lightweight concrete based on expanded clay gravel, natural crushed stone and granulated blast furnace slag by varying the volume content of porous coarse aggregate and the volume content of fine aggregate in relation to the mixture. In total, 9 series of prototypes and 1 series of control samples are manufactured and tested. One series of samples includes three cubes with dimensions of 10x10x10 cm. All samples are tested in terms of density and compressive strength, the coefficient of constructive quality is determined. The results of the study shows that the introduction of expanded clay gravel into the composition of heavy concrete instead of part of the dense coarse aggregate and the replacement of the fine dense aggregate with granular blast furnace slag leads to an increase in the structural quality factor, that is, a decrease in the compressive strength of concrete is compensated for by an even more significant decrease in the density of the material, and means weight reduction. The increase in the coefficient of constructive quality of concrete based on expanded clay gravel, natural crushed stone and granulated blast-furnace slag in comparison with the control composition is 15.6 %.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012017
Author(s):  
L R Mailyan ◽  
S A Stel’makh ◽  
E M Shcherban’ ◽  
D A Stroev

Abstract In the difficult conditions of modern construction, the use of concretes with a combined aggregate, if the composition is rational and the formulation and technological factors act rationally, will allow solving many existing problems. In this paper, studies were carried out on the choice of a rational formulation of lightened concrete based on foamed slag, natural crushed stone and granulated blast furnace slag by varying the volume content of a porous coarse aggregate and a fine aggregate in relation to the volume of the mixture. In total, 9 series of prototypes and 1 series of control samples were manufactured and tested. One series of samples includes three cubes with dimensions of 10x10x10 cm. All samples are tested for density, compressive strength and the coefficient of constructional quality. According to the results of the study, it was concluded that the introduction of foamed slag into the composition of heavy concrete instead of a part of a dense coarse aggregate and the replacement of a fine dense aggregate with granulated blast furnace slag leads to an increase in the coefficient of constructional quality, that is, the decrease in compressive strength of concrete is compensated by an even more significant decrease in the density of the material, and therefore a decrease in mass. The increase in the coefficient of constructional quality of concrete based on foamed slag, natural crushed stone and granulated blast furnace slag in comparison with the control composition was 14%.


2015 ◽  
Vol 1129 ◽  
pp. 607-613
Author(s):  
Hiroki Goda ◽  
Koji Harada ◽  
Shunji Tsugo ◽  
Makoto Hibino

The compressive strength and resistance to chemical attack of a fly-ash-based geopolymer, to which ground granulated blast furnace slag (B.F.S) and silica fume were added as mineral admixtures, were evaluated. The B.F.S. constituted 10% of the total powder amount in this geopolymer, which exhibited a high compressive strength. In addition, the compressive strength remained unchanged with proportional additions of silica fume to the mixture. The geopolymer exhibited, however, different resistance to sulfuric acid and sodium sulfate solutions during diffusion testing. In fact, the resistance of the B.F.S-containing mix to sulfuric acid was enhanced by the addition of silica fume and by autoclaving.


2014 ◽  
Vol 600 ◽  
pp. 227-239
Author(s):  
Hanan A. El Nouhy

This research investigates the influence of high temperature on the properties of bricks containing non-ground granulated blast-furnace slag (GBFS) as fine aggregate replacement. Replacement percentages were 0%, 25% and 50% by dry weight of fine aggregates. The manufactured bricks were exposed to 200°С, 400°С, 600°С, and 800°С for a constant duration of two hours after 28 days of curing. Tests were conducted according to both Egyptian Standard Specifications (ESS) and American Society for Testing and Materials (ASTM) in order to determine compressive strength, absorption percentage, oven-dry weight, and ultrasound pulse velocity. Also, loss in weight was performed. Compressive strength limit regarding load-bearing units was met by mix 1 at all tested temperatures. Mixes 2 and 3, resulted in compressive strength that satisfied the requirement for load-bearing units at temperatures ranging from room temperature to 600°С.Compressive strength obtained regarding mixes 2 and 3 met the requirements of non-load bearing units at 800°С. The control mix resulted in normal weight bricks when tested at the various temperatures till 600°С. At 800°С, mixes 2 and 3 yielded light weight and medium weight bricks, respectively. There was a significant reduction in mass when comparing the mass at 800°С with the corresponding mass at room temperature concerning the three mixes. Results showed that it is feasible to partially replace fine aggregate with GBFS even when bricks are subjected to elevated temperature.


2017 ◽  
Vol 266 ◽  
pp. 278-282 ◽  
Author(s):  
Jul Endawati

Pervious concrete primarily is used as a means of storm water management. Taking into consideration the environment issues, the binder can also be formed by partially replaced Portland cement by cementitious materials, such as blast furnace slag fine powder, fly ash and silica fume. The combination of the binder materials was determined based on previous work, which composed of 56% Portland Composite Cement, 15% fly ash Type F, 26% air-cooled blast furnace slag from a local steel Industry and 3% condensed silica fume. The compressive strength of specimens with coarser aggregate was lower compared with the control pervious concrete, but still within the range of the requirement compressive strength according to ACI 522R-2010. The difference of the aggregate size affected the enhancement of the compressive strength. The flexural strength of pervious concrete with aggregate size of 9.5mm-12.5mm tend to be higher compared with that of pervious concrete with smaller aggregate size. Furthermore, the addition of 6% natural fine aggregate while applying higher water/cement ratio could be a contribution to the enhancement of the compressive and the flexural strength.


Structures built with normal concrete are fading out from the construction industry due to the development of high strength concrete. The massive structures such as sky scrapers, bridges, tunnels, nuclear plants, underground structures need high strength concrete to withstand the high intensity vertical, horizontal and moving loads etc. The development of high strength alkaline activated concrete will reduce the usage of cement in construction community. Lesser the utilisation of cement will lessen the high emission of carbon dioxide gas into the atmosphere. In this study, high strength concrete using alumina and silica rich materials are made with a mix ratio of 1:1.31:2.22. The water to cement ratio for high strength cement concrete and the alkaline solution to binder ratio for alkaline activated concrete are kept as 0.35. Low calcium fly ash, Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin are used as binders and Manufacturing Sand is used as fine aggregate to made high strength alkaline activated concrete. The high strength alkaline activated concrete tests results are better than the high strength cement concrete.


2011 ◽  
Vol 250-253 ◽  
pp. 866-869 ◽  
Author(s):  
Hong Zhu Quan

To utilize the recycled powder as concrete additives, self-compaceing concerte with recycled powder, granulated blast-furnace slag and granulated limestone were tested for slump-flow, compressive strength, modulus of elasticity and drying shrinkage. Reduction in superplasticizing effect of high-range water reducer was found for concrete with recycled powder. Compressive strength of concrete with recycled powder were the same as those with granulated limestone, and lower than those with granulated blast-furnace slag. Concrete with recycled powder showed lower elastic modulus and higher drying shrinkage than those with granulated blast-furnace slag and granulated limestone. The addition of granulated blast-furnace slag together with recycled powder to self-compacting concrete improved superplasticizing effect of high-range water reducer and properties of concrete.


2016 ◽  
Vol 249 ◽  
pp. 108-111
Author(s):  
Michal Ženíšek ◽  
Tomáš Vlach ◽  
Lenka Laiblová

Reactive powder concrete (RPC) is cement composite which is characterized by an absence of coarse aggregate. That resulted in a greater homogeneity of the mixture and thus also in a higher compressive strength. On the other side, the absence of coarse aggregate and typically a large volume of the paste lead to the deterioration of some of the properties of concrete. This paper deals with the relationship between maximum aggregate size and flexural strength of the reactive powder concrete without dispersed reinforcement. Quartz sand with maximum grain size of 1, 2 and 4 mm was used for the experiments. The flexural strength was measured through the four-point bending test on prisms 100 x 100 x 400 mm. Further, the quartz powder and ground granulated blast furnace slag were used as addition and compared with each other. The results of the experiments showed that the flexural strength grows with decreasing aggregate size. This tendency was observed in mixtures with quartz powder and also with ground granulated blast furnace slag. On the contrary, the compressive strength was independent on aggregate size, but dependent on the type of used addition.


Sign in / Sign up

Export Citation Format

Share Document