scholarly journals Research progress on the cathode and anode of aqueous zinc ion battry

2021 ◽  
Vol 2076 (1) ◽  
pp. 012115
Author(s):  
Chengyu Fu ◽  
Dongming Gao

Abstract Electrochemical energy storage problems become a worldwide research direction. Now Lithium-ion batteries (LIBs) are the most common battery product. However, LIBs still has many shortcomings such as, safety problems, a scarcity of lithium, and high price. Rechargeable aqueous-based zinc ion batteries (AZIBs) with lower costs, fewer safety risks as well as abundant zinc reserves have attracted extensive research interest. For the current electrode materials of AZIBs, for example, Mn-based materials, V-based materials and metallic zinc, scientists have done in-depth research to develop the performance of the materials, but complex processes are still inevitable. As a result, sustainable and scalable manufacturing technology and electrode materials with high capacity and the longer service life is the research direction.

Author(s):  
Fangfang Xue ◽  
Yangyang Li ◽  
Chen Liu ◽  
Zhigang Zhang ◽  
Jun Lin ◽  
...  

Constructing suitable electrode materials with high capacity and excellent mechanical property is indispensable for flexible lithium-ion batteries (LIBs) to satisfy the growing flexible and wearable electronic devices. Herein, a necklace-like...


2016 ◽  
Vol 4 (47) ◽  
pp. 18223-18239 ◽  
Author(s):  
Miriam Keppeler ◽  
Nan Shen ◽  
Shubha Nageswaran ◽  
Madhavi Srinivasan

Review of the research progress in α-Fe2O3/carbon nanocomposites with superior electrochemical performance as promising alternatives to graphite anodes in LIBs.


2015 ◽  
Vol 3 (7) ◽  
pp. 3659-3666 ◽  
Author(s):  
Gang Wang ◽  
Jun Peng ◽  
Lili Zhang ◽  
Jun Zhang ◽  
Bin Dai ◽  
...  

Nanostructured electrode materials have been extensively studied with the aim of enhancing lithium ion and electron transport and lowering the stress caused by their volume changes during the charge–discharge processes of electrodes in lithium-ion batteries.


NANO ◽  
2019 ◽  
Vol 14 (02) ◽  
pp. 1930001 ◽  
Author(s):  
Xiaobei Zang ◽  
Teng Wang ◽  
Zhiyuan Han ◽  
Lingtong Li ◽  
Xin Wu

The upcoming energy crisis and the increasing power requirements of electronic devices have drawn enormous attention to research in the field of energy storage. Owing to compelling electrochemical and mechanical properties, two-dimensional nanomaterials can be used as electrodes on lithium-ion batteries to obtain high capacity and long cycle life. This review summarized the recent advances in the application of 2D nanomaterials on the electrode materials of lithium-ion batteries.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
JiPing Zhu ◽  
GuangShun Xiao ◽  
XiuXiu Zuo

AbstractTwo-dimensional black phosphorus (2D BP), an emerging material, has aroused tremendous interest once discovered. This is due to the fact that it integrates unprecedented properties of other 2D materials, such as tunable bandgap structures, outstanding electrochemical properties, anisotropic mechanical, thermodynamic, and photoelectric properties, making it of great research value in many fields. The emergence of 2D BP has greatly promoted the development of electrochemical energy storage devices, especially lithium-ion batteries. However, in the application of 2D BP, there are still some problems to be solved urgently, such as the difficulty in the synthesis of large-scale high-quality phosphorene, poor environmental stability, and the volume expansion as electrode materials. Herein, according to the latest research progress of 2D BP in the field of energy storage, we systematically summarize and compare the preparation methods of phosphorene and discuss the basic structure and properties of BP, especially the environmental instability and passivation techniques. In particular, the practical application and challenges of 2D BP as anode material for lithium-ion batteries are analyzed in detail. Finally, some personal perspectives on the future development and challenges of BP are presented.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850068 ◽  
Author(s):  
Changlei Niu

Aluminium has shown its superiority in stabilization of the monoclinic VO2(B) in free-standing nanobelts. In this paper, aluminium-doped VO2(B) nanobelts are successfully fabricated by a facile one-step hydrothermal method and used as cathode for lithium-ion battery. XPS results show that Al-doping promotes the formation of high valence state of vanadium in VO2(B) nanobelts. Due to the accommodation of valence state of vanadium and lattice volume, Al-doped VO2(B) nanobelts used as the cathode material for lithium-ion batteries exhibit better lithium storage properties with high capacity of 172[Formula: see text]mAh[Formula: see text]g[Formula: see text] and cycling stability than undoped VO2(B) nanobelts. This work demonstrates that the doping of aluminium can significantly enhance the electrochemical performance of VO2(B), suggesting that appropriate cationic doping is an efficient path to improve the electrochemical performance of electrode materials.


2012 ◽  
Vol 217-219 ◽  
pp. 792-795
Author(s):  
Ling Na Sun

LiFePO4 is a promising cathode material for the next generation of a lithium-ion rechargeable battery. This paper introduces the research progress in recent years on LiFePO4 as positive electrode materials for lithium ion batteries. The methods of the preparation and modification, relation ship between structure and performance, and prospect of olivine-type lithium iron phosphate cathode materials was reviewed. Porous structures offer the potential to improve the electrochemical properties of LiFePO4.


2017 ◽  
Vol 10 (02) ◽  
pp. 1730001 ◽  
Author(s):  
Hong-Li Chen ◽  
Xiao-Ning Jiao ◽  
Jin-Tao Zhou

Polyhedral oligomeric silsesquioxane (POSS) is a kind of organic–inorganic hybrid nanoparticle. This paper introduces the research progress of different kind of POSS organic–inorganic hybrid nanoparticles applied to lithium-ion batteries, fuel batteries, and supercapacitors by researchers on mechanical properties, thermal properties and electrochemistry properties. The results showed that the ionic conductivity of POSS/Li-ion solid polymer electrolyte reached 3.26[Formula: see text][Formula: see text][Formula: see text]10[Formula: see text][Formula: see text]S/cm and mechanical properties were commendable. The proton conductivity of POSS hybrid proton exchange membranes came to the level of 6.46[Formula: see text][Formula: see text][Formula: see text]10[Formula: see text][Formula: see text]S/cm and the mechanical strength was 18[Formula: see text]MPa with less content of POSS. With the inorganic core of POSS, smaller and more uniform multi-pore electrode materials offer a new idea on the fabrication of supercapacitor electrode materials.


Sign in / Sign up

Export Citation Format

Share Document