scholarly journals Design and Analysis of a Laminated Composite Tube

2021 ◽  
Vol 2085 (1) ◽  
pp. 012038
Author(s):  
Zhuqiao Ma ◽  
Zheyu Ren ◽  
Yufan Zhang ◽  
Min Yang

Abstract Piping is an important material for fluid transportation in modern industry, and well-structured piping can reduce losses due to maintenance and replacement downtime. Therefore it is necessary to design and analyze the pipes in order to optimize their structure. This paper focuses on composite laminated pipes. In this design case, the structural analysis of this pipe will be carried out by applying the laminate theory, and the structural analysis model will be established by using Mathcad software. The stress and strain of each laminate will be calculated by entering the winding angle and the corresponding equations in this software. The final optimal winding Angle can be determined by verifying the winding angles that can be maintained under maximum stress failure criteria using Mathcad contours and detailed tables of winding and torsion angles.

2019 ◽  
Vol 267 ◽  
pp. 02001
Author(s):  
Liangli Xiao ◽  
Yan Liu ◽  
Zhuang Du ◽  
Zhao Yang ◽  
Kai Xu

This study combines specific high-rise shear wall residential projects with the Revit to demonstrate BIM application processes. The use of R-Star CAD may help to realize the link barrier of the building information model and the structural analysis software PKPM. Sequentially, the information supplement of the structural analysis model is completed by extracting the structural information with the Revit secondary development. By the collaborative design platform based on BIM technology, the paper examines the collision check of structural model, conducts collision analysis on other professional models and modifies the design scheme for conflict points. After the statistics of material usage, an optimized design is proposed. The findings of this paper could contribute to provide some reference for the specific application of BIM in structural design and realize the application of BIM technology in the process of building structure design.


2013 ◽  
Vol 785-786 ◽  
pp. 1258-1261
Author(s):  
In Pyo Cha ◽  
Hee Jae Shin ◽  
Neung Gu Lee ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

Topology optimization and shape optimization of structural optimization techniques are applied to transport skate the lightweight. Skate properties by varying the design variables and minimize the maximum stress and strain in the normal operation, while reducing the volume of the objective function of optimal design and Skate the static strength of the constraints that should not degrade compared to the performance of the initial model. The skates were used in this study consists of the main frame, sub frame, roll, pin main frame only structural analysis and optimal design was performed using the finite element method. Simplified initial model set design area and it compared to SM45C, AA7075, CFRP, GFRP was using the topology optimization. Strength does not degrade compared to the initial model, decreased volume while minimizing the stress and strain results, the optimum design was achieved efficient lightweight.


2013 ◽  
Vol 325-326 ◽  
pp. 1314-1317
Author(s):  
Cong Sheng Chen ◽  
Ping He ◽  
Cheng Yong Wang ◽  
Xue Hui Chen ◽  
Lei Huang ◽  
...  

Three-dimensional integrated modeling method and the numerical simulation of elastoplastic finite element are adopted in the paper. The mechanical response of the five holes anchorage is analyzed in certain prestressed state. The stress and strain distribution information of the anchor ring, clip and steel strand is obtained respectively, and the structure safety is discussed by investigating on the maximum stress and strain.


Author(s):  
K. Bellendir ◽  
Hans A. Eschenauer

Abstract A well-aimed layout of fibre-reinforced lightweight rollers does not only require an efficient structural analysis procedure but also the application of structural optimization methods. Therefore, an analytical procedure is introduced for the calculation of the static behaviour of cylindrical shells subject to axisymmetric and/or nonaxisymmetric loads. In the scope of this procedure, arbitrary, unsymmetrical laminates as well as various boundary conditions will be considered. Basis is the shell theory by Flügge enhanced by anisotropic constitutive equations (material law) in the scope of the classical laminate theory. By means of mathematical optimization procedures we then determine optimal lightweight rollers, using different design and evaluation models. For that purpose, coated and uncoated roller constructions as well as hybrid types made of CFRP/GFRP will be applied. Concluding, we will discuss possible improvements and advantages of anisotropic lightweight rollers in contrast to isotropic ones made of steel or aluminium.


2015 ◽  
Vol 76 (11) ◽  
Author(s):  
Azizul Hakim Samsudin ◽  
Jamaluddin Mahmud

This paper aims to investigate the effect of lamination scheme and angle variations to the displacements and failure behaviour of composite laminate. Finite element modelling and analysis of symmetric, anti-symmetric and angle-ply Graphite/ Epoxy laminate with various angles of fiber orientation subjected to uniaxial tension are performed. Maximum Stress Theory and Tsai-Wu Failure Criteria are employed to determine the failure load (failure index = 1). Prior to that, convergence analysis and numerical validation are carried out. Displacements and failure behaviour of the composite laminates (symmetric, anti-symmetric and angle ply) are analysed. The failure curves (FPF and LPF) for both theories (Maximum Stress Theory and Tsai-Wu) are plotted and found to be very close to each other. Therefore, it can be concluded that the current study is useful and significant to the displacements and failure behaviour of composite laminate.


2006 ◽  
Vol 324-325 ◽  
pp. 43-46
Author(s):  
Yu Pu Ma ◽  
Xin Zhi Lin ◽  
Qing Fen Li ◽  
Zhen Li

When stress is high, delaminate damage can be induced by transverse cracks. A complete parabolic shear-lag damage model containing delamination induced by transverse cracks is therefore proposed and applied to predict the stiffness reduction by transverse cracking in cross-ply laminated composite materials. The predictions of the complete parabolic shear-lag analysis model, the incomplete parabolic shear-lag analysis model, and the complete parabolic shear-lag damage model containing delamination proposed in this paper have been compared. Results show that the young’s modulus reduction values obtained by our analysis model are better agreement with the experimental ones than other models.


Author(s):  
Syakirah Mohamed Amin ◽  
Muhammad Hanif Ramlee ◽  
Hadafi Fitri Mohd Latip ◽  
Gan Hong Seng ◽  
Mohammed Rafiq Abdul Kadir

Millions in the world suffering diabetes mellitus depends on insulin therapy to control their blood glucose level daily. However, the painful daily injections they need to take could lead to other complications if it is not done correctly. To date, it is suggested by many researchers and medical doctors that the needles should be inserted at any angles of 90º or 45º. Nevertheless, this recommendation has not been supported by clinical or biomechanical evaluation. Hence, this study evaluates the needle insertion for insulin therapy to find the favourable angles in order to reduce injury and pain onto the skin. Finite element analysis was done by  simulating the injection of three-dimensional (3D) needle model into a 3D skin model. The insertions were simulated at two different angles, which are 45ºand 90º with two different lengths of needles; 4 mm and 6 mm. This study concluded the favourable angle for 4 mm needle to be 90º while 6 mm needle was best to be inserted at 45º as these angles exerted the least maximum stress and strain onto the skin.


2011 ◽  
Vol 35 (9) ◽  
pp. 1137-1143 ◽  
Author(s):  
Kee-Nam Song ◽  
Heong-Yeon Lee ◽  
Sung-Deok Hong ◽  
Hong-Yoon Park

Sign in / Sign up

Export Citation Format

Share Document