scholarly journals Transmission spectra of transparent electrodes based on oriented platinum nanowires at various concentrations of the metal used

2021 ◽  
Vol 2086 (1) ◽  
pp. 012029
Author(s):  
G R Nizameeva ◽  
I R Nizameev ◽  
M K Kadirov

Abstract The paper investigates the optical transparency dependence of a coating based on an oriented network of platinum nanowires on the amount of metal used. Oriented platinum nanowires on a glass surface are produced by chemical deposition from an aqueous hexachloroplatinic acid solution. The topography of the deposited metal layer on glass is visualized using atomic force microscopy. Optical transparency was investigated with a spectrophotometer. In almost the entire region of optical radiation, the transparency is approximately 98%. The absorption spectrum shows that the absorption coefficient increases sharply in the near UV region.


2019 ◽  
Vol 10 ◽  
pp. 1636-1647 ◽  
Author(s):  
Wenting Wang ◽  
Chengfu Ma ◽  
Yuhang Chen ◽  
Lei Zheng ◽  
Huarong Liu ◽  
...  

Subsurface imaging of Au circuit structures embedded in poly(methyl methacrylate) (PMMA) thin films with a cover thickness ranging from 52 to 653 nm was carried out by using contact resonance atomic force microscopy (CR-AFM). The mechanical difference of the embedded metal layer leads to an obvious CR-AFM frequency shift and therefore its unambiguous differentiation from the polymer matrix. The contact stiffness contrast, determined from the tracked frequency images, was employed for quantitative evaluation. The influence of various parameter settings and sample properties was systematically investigated by combining experimental results with theoretical analysis from finite element simulations. The results show that imaging with a softer cantilever and a lower eigenmode will improve the subsurface contrast. The experimental results and theoretical calculations provide a guide to optimizing parameter settings for the nondestructive diagnosis of flexible circuits. Defect detection of the embedded circuit pattern was also carried out, which indicates the capability of imaging tiny subsurface structures smaller than 100 nm by using CR-AFM.



1999 ◽  
Vol 14 (9) ◽  
pp. 3725-3733 ◽  
Author(s):  
A. Fischer ◽  
F. C. Jentoft ◽  
G. Weinberg ◽  
R. Schlögl ◽  
T. P. Niesen ◽  
...  

Oxidic zirconium films prepared by chemical deposition from aqueous medium on sulfonic acid terminated self-assembled monolayers attached to an oxidized silicon surface were investigated with scanning electron microscopy and atomic force microscopy. Bulk precipitate forms in the 4 mM Zr(SO4)2 · 4H2O, 0.4 N HCl deposition medium at 343 K after approximately 30 min. Precipitate particles (200 nm and larger) were found embedded in the oxidic zirconium film and adsorbed on top of the film; they could be washed off, but patches of the film were removed. Working with unstable deposition solutions, in which homogeneous nucleation occurs, leads to preparation-inherent flaws in the film.



Author(s):  
A. Yampolskiy ◽  
O. Makarenko ◽  
V. Lendel ◽  
V. Prorok ◽  
A. Sharapa ◽  
...  

The optical properties of ultrathin Au and Sn islet films, obtained by the methods of magnetron sputtering and thermal evaporation, respectively, are considered in this paper. By measuring the Stokes vector of the beam reflected from the samples, polarized and depolarized radiation components were separated. The conditions of the polarization degree dependence on the surface structure for a series of islet films with different morphologies are analyzed. To determine the morphological structure of the metal layer, methods of atomic force microscopy and resistivity measurement were also employed. The parameters of discontinuous film, obtained by optical and non-optical methods, are compared. It is established that with an increase in the angle of radiation incidence onto the samples, the polarization degree of the reflected beam decreases. Such behavior can be explained by the Mie theory of light scattering by particles. The magnitude of depolarizing action of the samples also depends on the morphology of their surface, correlating with the number of inequalities on it. The applied method of Stokes polarimetry, thus, allows one to obtain additional information on the structure of the surface, which is its advantage.



1994 ◽  
Vol 337 ◽  
Author(s):  
L. Bellard ◽  
J.M. Themlin ◽  
F. Palmino ◽  
A. Cros

ABSTRACTWe have investigated the microscopic properties of copper and chromium layers deposited on polyphenylquinoxaline (PPQ). PPQ is a thermostable polymer used for multichip module applications. The metal is deposited under ultra-high vacuum conditions and analysed in-situ by X-ray photoemission (XPS) and atomic force microscopy (ex situ). Copper does not react significantly with the PPQ and tends to diffuse into the polymer matrix upon annealing. On the contrary, chromium strongly reacts with the polymer surface at room temperature. With increasing metal coverage, chromium grows in a layer-by-layer mode and the reacted interface is progressively burried under the pure metal layer.



2003 ◽  
Vol 790 ◽  
Author(s):  
J.S. Sharp ◽  
J.A. Forrest

ABSTRACTWe present a study of polystyrene-metal interfaces and discuss the relationship between the interfacial structure and anomalies in the measured glass transition temperature (Tg) of thin metal capped polystyrene (PS) films. The PS films used in these studies were coated with an evaporated metal layer of either Aluminum (Al) or gold (Au) and the Tg values were measured with ellipsometry. Uncoated PS films were also measured and these samples showed Tg values that were reduced relative to the bulk value for film thicknesses (h) less than 40 nm. Films coated with Au were shown to have measured Tg values that were the same as the bulk value (Tgbulk=370 K) for all the film thicknesses studied (h ≥ 8nm). The Al coated PS films had measured Tg values that were the same as the uncoated PS films. The observed differences are discussed in terms of the differences in the structure of the metal-polymer interfaces produced during thermal evaporation of the metal layers. A novel sample preparation procedure was developed to enable us to use Atomic Force Microscopy (AFM) to directly measure the structure of the buried polymer-metal interfaces. The measurements performed on these systems support the suggestion that the interfacial structure is different for the two metal-polymer interfaces studied and that these differences may be the cause of the anomalies in the measured Tgs of these samples.



Cellulose ◽  
2020 ◽  
Author(s):  
Vegar Ottesen ◽  
Kristin Syverud

Abstract Atomic force microscopy (AFM) can be used to quantitatively study nanomaterials in different media, e.g. vacuum, air, or submerged in a liquid. A technique was developed to study swelling of individual cellulose nanofibrils (CNFs) using AFM. As a case study, CNFs with different degrees of crystallinity (DoC) were examined for swellability going from dry to wet (submerged in de-ionized water). Swelling was found to depend on DoC, but no significant correlation between fibril diameter and swellability was seen. Upon introduction of de-ionized water high DoC samples ($$65\pm 2\%$$ 65 ± 2 % ) were found to have a diameter increase of 34% on average, whereas low DoC ($$44\pm 2\%$$ 44 ± 2 % ) were found to have a diameter increase of 44% on average. A tested control, consisting of platinum nanowires on silisium, did not swell. Graphic abstract



2015 ◽  
Vol 233-234 ◽  
pp. 686-689 ◽  
Author(s):  
Anatoly V. Chzhan ◽  
V.A. Seredkin ◽  
Gennady S. Patrin ◽  
Vladimir N. Zabluda ◽  
Yan V. Zubavichus ◽  
...  

Amorphous Со-Р and Co-Ni-P films fabricated by chemical deposition under the same conditions are investigated. It is demonstrated that the phosphorous content in the Co-Ni-P exceeds that in the Со-Р films by 1.5−2%. The atomic force microscopy analysis of the surface morphology shows that incorporation of Ni atoms in the Со−Р alloy leads to coarsening of grains due to the higher rate of deposition of Ni atoms as compared with the rate of deposition of Со atoms. The reduction of the dispersion of the polar Kerr effect saturation field in the Со-Ni-P films is attributed to ordering of Сo-Ni atomic pairs.



10.14311/904 ◽  
2007 ◽  
Vol 47 (1) ◽  
Author(s):  
J. Siegel ◽  
V. Kotál

Continuous gold layers of increasing thickness were prepared by the vacuum deposition method on pristine and plasma modified sheets of  PE, PET and PTFE. Various surface profiles were obtained. The surface morphology was studied using atomic force microscopy (AFM). The continuity of the metal layer on the polymer surface was validated by measuring its electrical resistance. Changes in the wettability of the plasma treated polymers were evaluated by measuring the aging curves. These were obtained as the dependence of contact angle on ageing time. 



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandros Kosmidis-Papadimitriou ◽  
Shaojun Qi ◽  
Ophelie Squillace ◽  
Nicole Rosik ◽  
Mark Bale ◽  
...  

To evaluate the role of common substrates in the transmission of respiratory viruses, in particular SARS-CoV-2, uniformly distributed microdroplets (approx. 10 µm diameter) of artificial saliva were generated using an advanced inkjet printing technology to replicate the aerosol droplets and subsequently deposited on five substrates, including glass, polytetrafluoroethylene, stainless steel, acrylonitrile butadiene styrene and melamine. The droplets were found to evaporate within a short timeframe (less than 3 s), which is consistent with previous reports concerning the drying kinetics of picolitre droplets. Using fluorescence microscopy and atomic force microscopy, we found that the surface deposited microdroplet nuclei present two distinctive morphological features as the result of their drying mode, which is controlled by both interfacial energy and surface roughness. Nanomechanical measurements confirm that the nuclei deposited on all substrates possess similar surface adhesion (approx. 20 nN) and Young's modulus (approx. 4 MPa), supporting the proposed core–shell structure of the nuclei. We suggest that appropriate antiviral surface strategies, e.g. functionalization, chemical deposition, could be developed to modulate the evaporation process of microdroplet nuclei and subsequently mitigate the possible surface viability and transmissibility of respiratory virus.



Sign in / Sign up

Export Citation Format

Share Document