scholarly journals Preparation of Thin Metal Layers on Polymers

10.14311/904 ◽  
2007 ◽  
Vol 47 (1) ◽  
Author(s):  
J. Siegel ◽  
V. Kotál

Continuous gold layers of increasing thickness were prepared by the vacuum deposition method on pristine and plasma modified sheets of  PE, PET and PTFE. Various surface profiles were obtained. The surface morphology was studied using atomic force microscopy (AFM). The continuity of the metal layer on the polymer surface was validated by measuring its electrical resistance. Changes in the wettability of the plasma treated polymers were evaluated by measuring the aging curves. These were obtained as the dependence of contact angle on ageing time. 

1994 ◽  
Vol 337 ◽  
Author(s):  
L. Bellard ◽  
J.M. Themlin ◽  
F. Palmino ◽  
A. Cros

ABSTRACTWe have investigated the microscopic properties of copper and chromium layers deposited on polyphenylquinoxaline (PPQ). PPQ is a thermostable polymer used for multichip module applications. The metal is deposited under ultra-high vacuum conditions and analysed in-situ by X-ray photoemission (XPS) and atomic force microscopy (ex situ). Copper does not react significantly with the PPQ and tends to diffuse into the polymer matrix upon annealing. On the contrary, chromium strongly reacts with the polymer surface at room temperature. With increasing metal coverage, chromium grows in a layer-by-layer mode and the reacted interface is progressively burried under the pure metal layer.


2020 ◽  
Author(s):  
Michelina Soccio ◽  
Nadia Lotti ◽  
Andrea Munari ◽  
Esther Rebollar ◽  
Daniel E Martínez-Tong

<p>Nanostructured wrinkles were developed on fully bio-based poly(trimethylene furanoate) (PTF) films by using the technique of Laser Induced Periodic Surface Structures (LIPSS). We investigated the effect of irradiation time on wrinkle formation using an UV pulsed laser source, at a fluence of 8 mJ/cm2. It was found that the pulse range between 600 and 4800 pulses allowed formation of periodic nanometric ripples. The nanostructured surface was studied using a combined macro- and nanoscale approach. We evaluated possible physicochemical changes taking place on the polymer surface after irradiation by infrared spectroscopy, contact angle measurements and atomic force microscopy. The macroscopic physicochemical properties of PTF showed almost no changes after nanostructure formation, differently from the results previously found for the terephthalic counterparts, as poly(ethyleneterephthalate), PET, and poly(trimethyleneterephthalate), PTT. The surface mechanical properties of the nanostructured PTF were found to be improved, as evidenced by nanomechanical force spectroscopy measurements. In particular, an increased Young’s modulus and higher stiffness for the nanostructured sample were measured. <br></p>


2016 ◽  
Vol 852 ◽  
pp. 626-631 ◽  
Author(s):  
Li Yuan Yu ◽  
Bo Zhu ◽  
Xun Cai ◽  
Yong Wei Wang ◽  
Rong Huan Han ◽  
...  

This paper reviewed a variety of methods of polymer surface modification, which mainly includes Solution processing method, Plasma treatment,Surface grafting method,Irradiation treatment and method of Atomic force microscopy probe shock , and the specific polymer material combined with the modification method and its modification mechanism was introduced in detail.Polymer has very extensive application both in chemical fields and in daily life, but due to its poor surface hydrophilicity and wear resistance, the further application of polymer materials were limited. In order to improve its surface properties, modification are needed on the surface of the polymer. Polymer surface modification means to operate on the surface of polymer within the scope of nanometer level, and give some new properties on material surface, such as hydrophilicity, scratch resistance, under the premise of without affecting the material ontic properties.There are many methods of polymer surface modification. This paper reviewed Solution processing method, Plasma treatment,Surface grafting method,Irradiation treatment and method of Atomic force microscopy probe shock . Different methods of modification combined with specific materials are introduced as follow.


2019 ◽  
Vol 10 ◽  
pp. 1636-1647 ◽  
Author(s):  
Wenting Wang ◽  
Chengfu Ma ◽  
Yuhang Chen ◽  
Lei Zheng ◽  
Huarong Liu ◽  
...  

Subsurface imaging of Au circuit structures embedded in poly(methyl methacrylate) (PMMA) thin films with a cover thickness ranging from 52 to 653 nm was carried out by using contact resonance atomic force microscopy (CR-AFM). The mechanical difference of the embedded metal layer leads to an obvious CR-AFM frequency shift and therefore its unambiguous differentiation from the polymer matrix. The contact stiffness contrast, determined from the tracked frequency images, was employed for quantitative evaluation. The influence of various parameter settings and sample properties was systematically investigated by combining experimental results with theoretical analysis from finite element simulations. The results show that imaging with a softer cantilever and a lower eigenmode will improve the subsurface contrast. The experimental results and theoretical calculations provide a guide to optimizing parameter settings for the nondestructive diagnosis of flexible circuits. Defect detection of the embedded circuit pattern was also carried out, which indicates the capability of imaging tiny subsurface structures smaller than 100 nm by using CR-AFM.


Author(s):  
A. Yampolskiy ◽  
O. Makarenko ◽  
V. Lendel ◽  
V. Prorok ◽  
A. Sharapa ◽  
...  

The optical properties of ultrathin Au and Sn islet films, obtained by the methods of magnetron sputtering and thermal evaporation, respectively, are considered in this paper. By measuring the Stokes vector of the beam reflected from the samples, polarized and depolarized radiation components were separated. The conditions of the polarization degree dependence on the surface structure for a series of islet films with different morphologies are analyzed. To determine the morphological structure of the metal layer, methods of atomic force microscopy and resistivity measurement were also employed. The parameters of discontinuous film, obtained by optical and non-optical methods, are compared. It is established that with an increase in the angle of radiation incidence onto the samples, the polarization degree of the reflected beam decreases. Such behavior can be explained by the Mie theory of light scattering by particles. The magnitude of depolarizing action of the samples also depends on the morphology of their surface, correlating with the number of inequalities on it. The applied method of Stokes polarimetry, thus, allows one to obtain additional information on the structure of the surface, which is its advantage.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2464
Author(s):  
Andrzej Miniewicz ◽  
Anna Sobolewska ◽  
Wojciech Piotrowski ◽  
Pawel Karpinski ◽  
Stanislaw Bartkiewicz ◽  
...  

It is well known that light-induced multiple trans-cis-trans photoisomerizations of azobenzene derivatives attached to various matrices (polymeric, liquid crystalline polymers) result in polymer mass movement leading to generation of surface reliefs. The reliefs can be produced at small as well as at large light intensities. When linearly polarized light is used in the process, directional photo-induced molecular orientation of the azo molecules occurs, which leads to the generation of optical anisotropy in the system, providing that thermal effects are negligible. On the other hand, large reliefs are observed at relatively strong laser intensities when the optofluidization process is particularly effective. In this article, we describe the competitive thermocapillary Marangoni effect of polymer mass motion. We experimentally prove that the Marangoni effect occurs simultaneously with the optofluidization process. It destroys the orientation of the azopolymer molecules and results in cancelation of the photo-induced birefringence. Our experimental observations of polymer surface topography with atomic force microscopy are supported by suitable modelings.


2004 ◽  
Vol 19 (1) ◽  
pp. 387-395 ◽  
Author(s):  
P.M. McGuiggan ◽  
D.J. Yarusso

An atomic force microscope was used to measure the loss tangent, tan δ, of a pressure-sensitive adhesive transfer tape as a function of frequency (0.01 to 10 Hz). For the measurement, the sample was oscillated normal to the surface and the response of the cantilever resting on the polymer surface (as measured via the photodiode) was monitored. Both oscillation amplitude and phase were recorded as a function of frequency. The atomic force microscopy measurement gave the same frequency dependence of tan δ as that measured by a dynamic shear rheometer on a film 20 times thicker. The results demonstrate that the atomic force microscope technique can quantitatively measure rheological properties of soft thin polymeric films.


1999 ◽  
Vol 5 (S2) ◽  
pp. 982-983
Author(s):  
Alan A. Galuska

The performance of many industrial polymers is determined by the microscopic morphology of the polymers. For example, surface morphology can influence properties such as adhesion, friction, sealing, blocking, printability, wettability, and haze. Furthermore, bulk morphology often controls mechanical properties such as toughness. strength, wear, and tear resistance. In order to optimize polymer performance, quick reliable methods of determining surface and bulk morphology are essential.In the past, electron microscopy (in particular TEM) has been the primary method for determining polymer morphology. However, the usefulness of electron microscopy has been limited by the destructive nature of the electron beam, the naturally poor contrast between polymer types, and the difficulty in preparing (staining, etching, cryogenic ultramicrotoming, etc.) high quality specimens.Recently, the tapping phase-shift mode of atomic force microscopy (TPSAFM) has provided the polymer scientist with a simple, quick, flexible and quantitative method for determining polymer surface and bulk morphology.


Sign in / Sign up

Export Citation Format

Share Document