scholarly journals Features of Electrophoretic Formation of Local Heat Sources Based on Nanosized Powder Al

2021 ◽  
Vol 2086 (1) ◽  
pp. 012192
Author(s):  
E S Leonenko ◽  
L I Sorokina ◽  
R M Ryazanov ◽  
E A Lebedev

Abstract In this study, the features of electrophoretic deposition (EPD) method to form nano-Al based energetic layers were investigated. The influence of solvents and additive components on the EPD process was analyzed, and the optimal composition of the suspension for the best deposition of layers based on nanoscale Al particles was acquired. The obtained layers can be used as an initiator of secondary reactions for on-chip energetic systems and a local heat source for joining surfaces by reactive bonding.

2021 ◽  
Vol 2086 (1) ◽  
pp. 012213
Author(s):  
A I Novoseltsev ◽  
L I Sorokina ◽  
A V Sysa ◽  
R M Ryazanov ◽  
E A Lebedev

Abstract In this work, multilayer nanostructured thermite materials are considered - a new type of local heat sources. Aluminium and copper oxide were chosen as components of the thermite mixture. The formation of multilayer structures was carried out on the surface of the substrate by the method of magnetron sputtering. The features of the deposition process as well as the energy properties of the formed materials have been investigated. The results obtained confirm the prospects of using this class of materials as local heat sources.


1999 ◽  
Author(s):  
V. H. Adams ◽  
K. Ramakrishna

Abstract Simulations for thermal characterization of electronic packages for silicon-based integrated circuit (IC) components typically assume one of the two uniform heat generation conditions. They are: (1) an isoflux condition in which heat generation is uniformly distributed over the active surface of the die, or (2) a uniform heat generation over the entire (or active) volume of the die. The use of these models may be justified due to high thermal conductivity of silicon, size of the devices on the die, and their relatively uniform spatial distribution over the entire surface of the die in the traditional silicon technologies. However, the current and future technologies are migrating towards embedded systems solutions, such as system-on-chip, and in traditional applications devices are brought in close proximity to each other for improved on-chip electrical performance. These trends result in localized regions of power dissipation on the die that would invalidate the use of traditional uniform generation models in the thermal characterization. The present study examines the effect of discrete heat sources (as opposed to uniformly distributed sources) on the die on thermal performance and characterization of the electronic packages. For this purpose, a conjugate heat transfer problem of a memory chip in a 119 I/O flip chip ceramic and plastic ball grid array (FC-C & PBGA) package under natural and forced convection conditions. First the model is validated against experimentally measured thermal data on a 119 I/O FC-C & P BGA daisy-chain test packages with a thermal test die with uniformly distributed resistive heat source. Junction-to-ambient temperature difference predictions from the simulations are within 10% of the measurements for the uniform heating case. The validated model is then suitably modified to account for discrete heat sources and actual substrates. Results from the discrete heat sources study show a 15–20% increase in predicted junction-to-ambient temperature difference and a larger (a 10–15 °C) temperature variation across the active face of the die than for with a uniform heat source. These results call for the use of discrete heat sources in the thermal characterization of new generation of embedded silicon technologies. They also point to the need for development of test die and characterization methodologies for these technologies with discrete heat sources.


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


1987 ◽  
Vol 109 (4) ◽  
pp. 912-918 ◽  
Author(s):  
J. R. Parsons ◽  
M. L. Arey

Experiments have been performed which describe the transient development of natural convective flow from both a single and two vertically aligned horizontal cylindrical heat sources. The temperature of the wire heat sources was monitored with a resistance bridge arrangement while the development of the flow field was observed optically with a Mach–Zehnder interferometer. Results for the single wire show that after an initial regime where the wire temperature follows pure conductive response to a motionless fluid, two types of fluid motion will begin. The first is characterized as a local buoyancy, wherein the heated fluid adjacent to the wire begins to rise. The second is the onset of global convective motion, this being governed by the thermal stability of the fluid layer immediately above the cylinder. The interaction of these two motions is dependent on the heating rate and relative heat capacities of the cylinder and fluid, and governs whether the temperature response will exceed the steady value during the transient (overshoot). The two heat source experiments show that the merging of the two developing temperature fields is hydrodynamically stabilizing and thermally insulating. For small spacing-to-diameter ratios, the development of convective motion is delayed and the heat transfer coefficients degraded by the proximity of another heat source. For larger spacings, the transient behavior approaches that of a single isolated cylinder.


2005 ◽  
Vol 129 (2) ◽  
pp. 236-240 ◽  
Author(s):  
Jun Wen ◽  
M. M. Khonsari

An analytical technique is presented for treating heat conduction problems involving a body experiencing oscillating heat flux on its boundary. The boundary heat flux is treated as a combination of many point heat sources, each of which emits heat intermittently based on the motion of the flux. The working function of the intermittent heat source with respect to time is evaluated by using the Fourier series and temperature profile of each point heat source is derived by using the Duhamel’s theorem. Finally, by superposition of the temperature fields over all the point heat sources, the temperature profile due to the original moving heat flux is determined. Prediction results and verification using finite element method are presented for an oscillatory heat flux in a rectangular domain.


2007 ◽  
Vol 129 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Jun Wen ◽  
M. M. Khonsari

An analytical approach for treating problems involving oscillatory heat source is presented. The transient temperature profile involving circular, rectangular, and parabolic heat sources undergoing oscillatory motion on a semi-infinite body is determined by integrating the instantaneous solution for a point heat source throughout the area where the heat source acts with an assumption that the body takes all the heat. An efficient algorithm for solving the governing equations is developed. The results of a series simulations are presented, covering a wide range of operating parameters including a new dimensionless frequency ω¯=ωl2∕4α and the dimensionless oscillation amplitude A¯=A∕l, whose product can be interpreted as the Peclet number involving oscillatory heat source, Pe=ω¯A¯. Application of the present method to fretting contact is presented. The predicted temperature is in good agreement with published literature. Furthermore, analytical expressions for predicting the maximum surface temperature for different heat sources are provided by a surface-fitting method based on an extensive number of simulations.


Sign in / Sign up

Export Citation Format

Share Document