In Situ Probing Biological Structures by Combining Focused Ion Beam and Atomic Force Microscopy

2015 ◽  
Vol 21 (S3) ◽  
pp. 1985-1986
Author(s):  
Boyin Liu ◽  
Vahid Reza Adineh ◽  
Jing Fu
2005 ◽  
Vol 38 (6) ◽  
pp. 2368-2375 ◽  
Author(s):  
Nick Virgilio ◽  
Basil D. Favis ◽  
Marie-France Pépin ◽  
Patrick Desjardins ◽  
Gilles L'Espérance

2004 ◽  
Vol 811 ◽  
Author(s):  
Yingge Du ◽  
Surajit Atha ◽  
Robert Hull ◽  
James F. Groves ◽  
Igor Lyubinetsky ◽  
...  

ABSTRACTA method has been developed for specifying the growth location of Cu2O nanodotson SrTiO3 (100) substrates. Growth location has been specified by using a focused ion beam (FIB) to modify microscopic and nanoscopic regions of the SrTiO3substrate prior to Cu2O deposition. Deposition onto the modified regions under carefully selected process conditions has generated nanodot growth at the edge of microscopic FIB-induced features and on top of nanoscopic FIB-induced features. For this work, an array of evenly spaced FIB implants was first patterned into several regions of each substrate. Within each sub-division of the array, the FIB implants were identical in Ga+ energy and dosage and implant diameter and spacing. After FIB surface modification and subsequent in-situ substrate cleaning, Cu2O nanodots were synthesized on the patterned SrTiO3 substrates using oxygen plasma assisted molecular beam epitaxy. The substrates and nanodots were characterized using atomic force microscopy at various stages of the process; in-situ X-ray photoelectron spectroscopy and Auger electron spectroscopy analysis demonstrated that the final stoichiometry of the nanodots was Cu2O. The photocatalytic decomposition of water on Cu2O under visible light irradiation has been reported. If the Cu2O can be located in the form ofislands on a carefully selected substrate, then it could be possible to greatly enhance the efficiency of the photochemical process.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012204
Author(s):  
D J Rodriguez ◽  
A V Kotosonova ◽  
H A Ballouk ◽  
N A Shandyba ◽  
O I Osotova ◽  
...  

Abstract In this work, we carried out an investigation of commercial atomic force microscope (AFM) probes for contact and semi-contact modes, which were modified by focused ion beam (FIB). This method was used to modify the original tip shape of silicon AFM probes, by ion-etching and ion-enhance gas deposition. we show a better performance of the FIB-modified probes in contrast with the non-modified commercial probes. These results were obtained after using both probes in semi-contact mode in a calibration grating sample.


2009 ◽  
Vol 76-78 ◽  
pp. 497-501 ◽  
Author(s):  
Zong Wei Xu ◽  
Feng Zhou Fang ◽  
Xiao Tang Hu

Carbon nanotube (CNT) probe used in atomic force microscopy (AFM) was fabricated by using electron beam induced Pt deposition method. The bonding force for CNT probe was found to be larger than 500nN. The nanotube probe’s length was shortened by focused ion beam milling process. It is confirmed that the CNT probe shows higher aspect ratio than the Si probe. The nanotube probes with fullerene-like cap end present higher imaging resolution than those with open end.


2005 ◽  
Vol 107 ◽  
pp. 47-50 ◽  
Author(s):  
S. Sangyuenyongpipat ◽  
Thiraphat Vilaithong ◽  
L.D. Yu ◽  
Rattikorn Yimnirun ◽  
Pisith Singjai ◽  
...  

The interaction between ion beam and biological cells has been studied to apply ionbeam- induced mutation to breeding of crops and gene transfer in cells. Formation of micro-craters has been observed after ion bombardment of plant cells and they are suspected to act as pathways for exogenous macromolecule transfer in the cells. A technique of in-situ atomic force microscopy (AFM) in the ion beam line is being developed to observe ion bombardment effects on cell surface morphology during ion bombardment. A commercial AFM is designed to place inside the target chamber of the bioengineering ion beam line at Chiang Mai University. In order to allow the ion beam to properly bombard the sample without the risk of damaging the scanning tip and affecting normal operation of AFM, geometrical factors have been calculated for tilting the AFM with 35 degree from the normal. In order to avoid vibrations from external sources, mechanical designs have been done for a vibration isolation system. Construction and installation of the in-situ AFM facility to the beam line have been completed and are reported in details.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
N. Mahmoodi ◽  
A. Sabouri ◽  
J. Bowen ◽  
C. J. Anthony ◽  
P. M. Mendes

The reference cantilever method is shown to act as a direct and simple method for determination of torsional spring constant. It has been applied to the characterization of micropaddle structures similar to those proposed for resonant functionalized chemical sensors and resonant thermal detectors. It is shown that this method can be used as an effective procedure to characterize a key parameter of these devices and would be applicable to characterization of other similar MEMS/NEMS devices such as micromirrors. In this study, two sets of micropaddles are manufactured (beams at centre and offset by 2.5 μm) by using LPCVD silicon nitride as a substrate. The patterning is made by direct milling using focused ion beam. The torsional spring constant is achieved through micromechanical analysis via atomic force microscopy. To obtain the gradient of force curve, the area of the micropaddle is scanned and the behaviour of each pixel is investigated through an automated developed code. The experimental results are in a good agreement with theoretical results.


Sign in / Sign up

Export Citation Format

Share Document