scholarly journals Design of a High-precision 5V/10V DC Voltage Reference Source

2021 ◽  
Vol 2087 (1) ◽  
pp. 012034
Author(s):  
Yubo Yang ◽  
Jing Meng ◽  
Wenbo Yao

Abstract This paper introduces a self-developed DC voltage source, which uses the Zener reference LTZ1000 as the voltage reference element. Selecting high precise resistors and using appropriate measures to insulate and isolate, the short—time relative stability of 7V output voltage provided by LTZ1000 is 1.5×10-8. The voltage of 10V is increased up by a network, composed by high precise resistors with the same temperature coefficient, and its short—time relative stability is 2.2×10-8. The voltage of 5V is divided by a network, composed by high precise resistors with the same temperature coefficient, and its short—time relative stability is 3.6×10-7. The circuit is suitable for signal acquisition, voltage calibration and other applications.

2019 ◽  
Vol 8 (3) ◽  
pp. 6584-6591

In recent days, multilevel inverter has widely been used for high power application. This may be due to the reduction of total harmonic distortion (THD) of the output voltage level and having low blocking voltages of switches. In the existing system, DC voltage source which is maintained constant is given as the input to the inverters which contains the series connection of fundamental block and is analyzed in symmetric and asymmetric mode of operation to produce various voltage levels. The proposed approach replaces the DC voltage source to the Photovoltaic (PV) cell has been used which has variations in the output voltage side depends on the solar irradiation level. This Photovoltaic cell uses Maximum Power Point Tracking (MPPT) algorithm to produce required voltage. As the input to the multilevel inverter (MLI) has to be maintained constant a fly back forward converter has been used in between the Photovoltaic cell and the multilevel inverter, so that the required multiple constant output voltage has been obtained on the output of the converter. Using the output of the converter 13 output voltage levels can be obtained from the multilevel inverter. The performance of the proposed system is verified by simulation through MATLAB/Simulink environment


2015 ◽  
Vol 793 ◽  
pp. 280-285
Author(s):  
J.A. Soo ◽  
N.A. Rahman ◽  
J.H. Leong

This paper proposed a novel single-stage square wave buck-boost inverter (SWBBI). The proposed inverter is designed by using dual buck-boost converters. The input DC voltage of the proposed inverter can be either stepped-down or stepped-up in square output voltage waveform depending on the duty-cycle applied for each buck-boost converter. This characteristic is not found in conventional voltage source inverter where the output voltage is always lower than the input DC voltage. The proposed inverter is analyzed by a series of simulations using MATLAB/Simulink as well as experiments by using different values of duty-cycle. A conclusion about the feasibility of the proposed inverter is given by comparing the simulation and experimental results.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750203 ◽  
Author(s):  
Ebrahim Babaei ◽  
Mohammad Shadnam Zarbil ◽  
Mehran Sabahi

In this paper, a new topology for cascaded multilevel inverters based on quasi Z-source converter is proposed. In the proposed topology, the magnitude of output voltage is not limited to dc voltage source, while the magnitude of output voltage of conventional cascaded multilevel inverters is limited to dc voltage source. In the proposed topology, the magnitude of output voltage can be increased by controlling the duty cycle of shoot-through (ST) state, transformer turn ratio, and the number of switched inductors in the Z-source network. As a result, there is no need for extra dc–dc converter. In the proposed topology, the total harmonic distortion (THD) is decreased in comparison with the conventional Z-source inverters. The proposed topology directly delivers power from a power source to load. In addition, in the proposed basic unit, higher voltage gain is achieved in higher modulation index which is an advantage for the proposed base unit. The performance of the proposed topology is verified by the experimental results of five-level single-phase inverter.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Taige Chen

This paper investigates the topic of voltage multiplication, which converts a low AC voltage source to a high DC voltage source. Several designs are evaluated, such as the voltage doubler, the voltage tripler, and the voltage quadrupler. It is discovered that the input frequency and the capacitance do not affect the output voltage. This design can be extended to any integer multiples of the input voltage.


2000 ◽  
Vol 47 (1) ◽  
pp. 186-192 ◽  
Author(s):  
I. Nancovska ◽  
A. Jeglic ◽  
D. Fefer ◽  
L. Todorovski

2020 ◽  
Vol 1 (2) ◽  
pp. 144-149
Author(s):  
Muldi Yuhendri ◽  
Randy Setiawan

Direct current (dc) voltage sources are one of the voltage sources most widely used for various purposes. Dc voltage can be obtained from a dc generator or by converting an ac voltage into a dc voltage using a power converter. There are several dc voltage levels that are commonly used by electrical and electronic equipment. To get a dc voltage that can be used for various equipment, then a dc voltage source must be varied according to the required. One way to get a variable dc voltage is to use a dc-dc converter. This research proposes a dc-dc boost converter that can increase the dc voltage with varying outputs. The boost converter is proposed using Arduino Uno as a controller with an input voltage of 12 volts. The converter output voltage regulation is implemented through Arduino programming using Matlab simulink. The experimental results show that the boost converter designed in this study has worked well as intended. This can be seen from the boost converter output voltage which is in accordance with the reference voltage entered in the Matlab simulink program


Sign in / Sign up

Export Citation Format

Share Document