scholarly journals The role of boundary conditions on the free surface of a liquid metal in an electrovortex flow

2021 ◽  
Vol 2088 (1) ◽  
pp. 012047
Author(s):  
I O Teplyakov ◽  
S V Kiselyova ◽  
K Yu Malyshev ◽  
E A Mikhaylov

Abstract An electro-vortex flow between two hemispherical electrodes is considered. The influence of the type of boundary condition on the surface of a conducting liquid medium on the velocity field in the volume is studied numerically. The dependences of the velocity on the axis of the vessel on the radius of the small electrode and the parameter of the electric vortex flow are obtained for various types of boundary conditions on the surface.

1982 ◽  
Vol 35 (2) ◽  
pp. 147
Author(s):  
J Mahanty

The feasibility of explaining the charge response properties of a jellium surface through excitation of ripplon modes on the electron fluid is examined. It is demonstrated that for a sharp equilibrium density profile the response to the field of an external source through ripplons is different from that through surface plasmons, although in the non-dispersive limit they become identical despite the radical difference in the boundary conditions associated with the two types of excitation. It is suggested that because a free surface is more likely to satisfy the boundary condition for ripplons than for surface plasmons, the surface response properties would be determined more through the excitation of ripplons.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Anatoly Konechny

Abstract We consider RG interfaces for boundary RG flows in two-dimensional QFTs. Such interfaces are particular boundary condition changing operators linking the UV and IR conformal boundary conditions. We refer to them as RG operators. In this paper we study their general properties putting forward a number of conjectures. We conjecture that an RG operator is always a conformal primary such that the OPE of this operator with its conjugate must contain the perturbing UV operator when taken in one order and the leading irrelevant operator (when it exists) along which the flow enters the IR fixed point, when taken in the other order. We support our conjectures by perturbative calculations for flows between nearby fixed points, by a non-perturbative variational method inspired by the variational method proposed by J. Cardy for massive RG flows, and by numerical results obtained using boundary TCSA. The variational method has a merit of its own as it can be used as a first approximation in charting the global structure of the space of boundary RG flows. We also discuss the role of the RG operators in the transport of states and local operators. Some of our considerations can be generalised to two-dimensional bulk flows, clarifying some conceptual issues related to the RG interface put forward by D. Gaiotto for bulk 𝜙1,3 flows.


2007 ◽  
Vol 590 ◽  
pp. 319-330 ◽  
Author(s):  
KARL-HEINZ HOFFMANN ◽  
DAVID MARX ◽  
NIKOLAI D. BOTKIN

The Stokes formula for the resistance force exerted on a sphere moving with constant velocity in a fluid is extended to the case of micropolar fluids. A non-homogeneous boundary condition for the micro-rotation vector is used: the micro-rotation on the boundary of the sphere is assumed proportional to the rotation rate of the velocity field on the boundary.


2020 ◽  
Vol 93 (10) ◽  
Author(s):  
Hans Werner Diehl

Abstract Interacting field theories for systems with a free surface frequently exhibit distinct universality classes of boundary critical behaviors depending on gross surface properties. The boundary condition satisfied by the continuum field theory on some scale may or may not be decisive for the universality class that applies. In many recent papers on boundary field theories, it is taken for granted that Dirichlet or Neumann boundary conditions decide whether the ordinary or special boundary universality class is observed. While true in a certain sense for the Dirichlet boundary condition, this is not the case for the Neumann boundary condition. Building on results that have been worked out in the 1980s, but have not always been appropriately appreciated in the literature, the subtle role of boundary conditions and their scale dependence is elucidated and the question of whether or not they determine the observed boundary universality class is discussed. Graphical abstract


1978 ◽  
Vol 22 (04) ◽  
pp. 216-230
Author(s):  
Kwang June Bai

A numerical method is presented for solving two-dimensional uniform flow problems with a linearized free-surface boundary condition. The boundary-value problem governed by Laplace's equation is replaced by a weak formulation (also known as Galerkin's method) with certain essential boundary conditions. The infinite domain of the fluid is reduced to a finite domain by utilizing known solution spaces in certain subdomains. The bases for the trial and test functions are chosen from the same subspace of the polynomial function space in the reduced subdomain. The essential boundary conditions are properly taken into account by an unconventional choice of the basis for the trial functions, which is different from that for the test functions in other subdomains. This method is applied to two-dimensional steady flow past a submerged elliptic section, a hydrofoil at an arbitrary angle of attack, and a bump on the bottom. In each example the body boundary condition is satisfied exactly. Both subcritical and supercritical flows are treated. We present the numerical results of wave resistance, lift force, moment, circulation strength, and flow blockage parameter. The computed pressure distributions on the hydrofoil and wave profiles are shown. The test results obtained by the present method agree very well with existing results. The main advantage of this method is that any complex geometry of the boundary can be easily accommodated.


2021 ◽  
Author(s):  
Wen-Xiang Chen

In this paper, it is explained that the role of the cosmological constant in the De Sitter space is similar to that of the preset boundary conditions in the superradiation phenomenon. In the previous literature, superradiance at a given boundary condition can cause the uncertainty principle to be less extreme, and so the uncertainty principle to be less extreme without the given boundary condition, might be one way to prove that the universe is ds spacetime.


Author(s):  
Анатолий Васильевич Кистович ◽  
Татьяна Олеговна Чаплина ◽  
Евгения Вячеславовна Степанова

Экспериментально и аналитически исследованы характеристики вихревого течения со свободной поверхностью, образующегося в результате вращения активаторного диска, расположенного на дне цилиндрического контейнера, заполненного водой. Получены аналитические выражения, показывающие, что траектории жидких частиц вблизи поверхности вихря представляют собой трехмерные спирали, по которым происходит течение от периферии к центу вихря. Показано, что рассчитанные и визуализированные траектории жидких частиц хорошо согласуются между собой и относятся к классу пространственных логарифмических спиралей. The work is aimed to compare results of analytical and experimental modeling of vortex fluid flow. The compound flow of liquid (water) occurs in a vertical cylindrical container without upper endwall under the action of the disk rotating at the bottom endwall. The two main components of the emerging flow are the toroidal vortex and the vortex with vertical axis. The equations are written in the cylindrical coordinate system dictated by the geometry of the problem. On the basis of the existing analytical expression, which describes the free surface form of the compound vortex in the zero approximation, an approach is developed to describe the trajectories of individual “liquid particles”. The obtained result allows to explore the velocity field structure near the free surface. The obtained expressions indicate that the velocity field near free surface becomes more pronounced in the tangent direction. This result is confirmed in the experimental studies of the compound vortex flow. The analytical forms of liquid particle trajectories near and on the free surface of the compound vortex are obtained. The general particle movement is from the container sidewall along the free surface to its center and further down the spiral-helical line. The images of the visualized particles trajectories both on the free surface (logarithmic spiral) and in the liquid depth are obtained in experiments and testify in favor of the implemented approach to the construction of analytical solution of the liquid particle motion for the vortex flow of the mentioned type. The correspondence of the calculated free surface forms obtained with the help of analytical expressions and those observed in the experiments with different parameters of the vortex flow shows that the developed approach to the problem can be based on a simplified description.


2019 ◽  
Vol 16 (4) ◽  
pp. 690-706
Author(s):  
Zhencong Zhao ◽  
Jingyi Chen ◽  
Xiaobo Liu ◽  
Baorui Chen

Abstract The frequency-domain seismic modeling has advantages over the time-domain modeling, including the efficient implementation of multiple sources and straightforward extension for adding attenuation factors. One of the most persistent challenges in the frequency domain as well as in the time domain is how to effectively suppress the unwanted seismic reflections from the truncated boundaries of the model. Here, we propose a 2D frequency-domain finite-difference wavefield simulation in elastic media with hybrid absorbing boundary conditions, which combine the perfectly matched layer (PML) boundary condition with the Clayton absorbing boundary conditions (first and second orders). The PML boundary condition is implemented in the damping zones of the model, while the Clayton absorbing boundary conditions are applied to the outer boundaries of the damping zones. To improve the absorbing performance of the hybrid absorbing boundary conditions in the frequency domain, we apply the complex coordinate stretching method to the spatial partial derivatives in the Clayton absorbing boundary conditions. To testify the validity of our proposed algorithm, we compare the calculated seismograms with an analytical solution. Numerical tests show the hybrid absorbing boundary condition (PML plus the stretched second-order Clayton absorbing condition) has the best absorbing performance over the other absorbing boundary conditions. In the model tests, we also successfully apply the complex coordinate stretching method to the free surface boundary condition when simulating seismic wave propagation in elastic media with a free surface.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750119 ◽  
Author(s):  
Pourya Omidvar ◽  
Omid Farghadani ◽  
Pooyan Nikeghbali

The numerical modeling of fluid interaction with a bouncing body has many applications in scientific and engineering application. In this paper, the problem of water impact of a body on free-surface is investigated, where the fixed ghost boundary condition is added to the open source code SPHysics2D1 to rectify the oscillations in pressure distributions with the repulsive boundary condition. First, after introducing the methodology of SPH and the option of boundary conditions, the still water problem is simulated using two types of boundary conditions. It is shown that the fixed ghost boundary condition gives a better result for a hydrostatics pressure. Then, the dam-break problem, which is a bench mark test case in SPH, is simulated and compared with available data. In order to show the behavior of the hydrostatics forces on bodies, a fix/floating cylinder is placed on free surface looking carefully at the force and heaving profile. Finally, the impact of a body on free-surface is successfully simulated for different impact angles and velocities.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Sign in / Sign up

Export Citation Format

Share Document