scholarly journals Partial Replacement of Pumice Stone in Concrete As Coarse Aggregate Material

2021 ◽  
Vol 2089 (1) ◽  
pp. 012061
Author(s):  
S Sagar ◽  
M.M Darshan ◽  
M Roja ◽  
UP Kalappa

Abstract In design of concrete structures, concrete plays an important role in the contemporary background as raw material for construction has been decreased. Therefore construction industry has acquaint with novel methods by making use of the available waste material for partial replacement by using alternative aggregates instead of ordinary aggregates. In this study, pumice stone is used as replacement materials for concrete where it is found in the abyssal of the red clay or in deepest portion of the ocean, and partially replacing by Pumice, blends with cement. The physical, mechanical and durability properties of concrete was investigated by conduction compressive strength and tensile strength on the ordinary and replaced concrete with varied percentage of pumice from 5% to 30%. It’s obsereved that environmental and economical benefits can be achieved if waste materials can be used to replace the coarse aggregate in order to use the waste materials effectively in areas with abundant availability of materials. This thesis work on the effectiveness of partial substitutions of pumice for coarse aggregate in producing adequate strength gain. In the present thesis work comparison of fresh concrete and hardened properties of concrete for both conventional concrete and Replaced concrete for varying percentage of replacement of pumice stone to coarse aggregate and based on the experimental results, it’s concluded that 25% partial replacement by pumice gives maximum compresive strength.

Author(s):  
Mohammed Sohel Ahmed

Abstract: As the demand for the structural members application in the concrete industry is continuously increasing simultaneously many a times it is required to lower the density of concrete enabling light weight which helps in easy handling of the concrete and its members. In this research an experimental endeavour has been made to equate conventional concrete with light weight by partially substituting the coarse aggregate with the pumice stone aggregate in M30 grade mix design. Simultaneously small fibres of Recron3's Polypropylene have been applied to the concrete as a reinforcing medium to minimize shrinkage cracking and improve tensile properties. The coarse aggregate was substituted by the pumice aggregate in 10, 20, 30, 40, and 50 percent and fibres respectively in 0.5, 1, 1.5, 2 and 2.5 percent. The experiment is focused on strength parameters to determine the most favourable optimum percent with respect to conventional concrete. Keywords: OPC (Ordinary Portland Cement)1, FA (Fine Aggregate)2, CA (Coarse Aggregate) 3, fck (Characteristic Compressive Strength at 28days)4, Sp. Gr (Specific Gravity)5, WC (Water Content)6, W/C (Water Cement Ratio)7, S (Standard Deviation)8, Fck (Target Average Compressive Strength at 28days)9.


2019 ◽  
Vol 8 (4) ◽  
pp. 12142-12146

Geopolymer concrete is one of the major developments in recent years resulting in utilization of fly ash in huge quantities and eventually reducing cement consumption and ultimately reducing emission of greenhouse gases.The geopolymer concrete is produced by using activated fly ash as binder material instead of cement. Geopolymer concrete accomplishes great strength and looks similar to conventional concrete. Recycled coarse aggregate (RCA )which is coming from demolition of construction of old and existing structures has been used in this study. The durability property; acid attack resistance with partial replacement of coarse aggregate by recycled aggregate in geopolymer and conventional concrete for the different composition such as 10, 20, 30 and 40percentage for a period of 15, 45,75 and 105 days has been evaluated. From the results it was observed that in both natural and recycled aggregate of Geopolymer concrete is highly resistant to acids such as sulphuric acid and hydrochloric acid compared to conventional concrete of respective aggregates.


In recent days, there is an intense need for an alternate cost effective and sustainable raw material for concrete which does not make the structure inferior in strength. An experimental study on the utilization of the waste plastic and M-sand in the place of river sand and aggregate partially was performed in paper. In the scenario of scarcity of river sand due to the territorial government action and restriction of usage because of the eco and environmental consideration, M-Sand is found to be an effective replacement and cost effective material. Concrete specimens were casted with combination of M-sand and plastic waste with 5%, 10%, 15%, 20% and 25% and compared against control mix. Cube test for compressive strength study, cylinder test for split tensile strength study and prism test for flexural strength study were done with the proposed concert mixture. All the specimens and tests were done for different curing period of 7, 14 and 28 days. The results obtained from the proposed mix of concrete are compared with the conventional concrete mix specimen respectively. The replacement of fine aggregates reduces the quantity of river sand to be used in concrete and also plastic fibres are proved to be more economical. Positive performance of the concrete with waste plastic and M-Sand as partial replacement of river sand was observed on all the experiments and found optimal in sustainable and economical performance.


2020 ◽  
Vol 184 ◽  
pp. 01083
Author(s):  
Dr. Vanathi ◽  
Dr.K Radhika ◽  
Ms. G. Swetha

Permeable concrete is a special concrete which consists of cement, coarse aggregate and water. Due to rapid growth of globalization and urbanization, the construction of concrete roads increasing day by day which leads to decrease in percolation of storm water, surface runoff occurring to the decrease in ground water table. In previous concrete, single sized aggregate is used to maintain the void ratio in the concrete. The cement paste is bonded with aggregate with a void ratio of 20%. In this investigation, concrete of M20 grade with water cement ratio of 0.38 is used. The properties of concrete were increased by using Rice husk ash and Bagasse ash in changed percentages (10%, 20%, 30%) by weight of cement and with the combination of rice husk ash and bagasse ash 10% (5%RA + 5%BA), 20%(10%RA+10%BA), 30%(15%RA+15%BA) are used. The compressive strength of cubes, split tensile of cylinders are casted, tested after 7 days and 28 days. After testing, the optimum percentages of replacement of admixtures are found in the Permeable concrete. Therefore the strength and durability properties of permeable concrete with the addition of bagasse ash and rice husk ash with partial replacement of cement are compared with conventional concrete.


Disposal problem of waste materials and excessive demand on naturally available resources due to rapid urban development has opened possibilities for use of waste materials in construction industry. Many waste materials are used in concrete as replacement to cement, fine aggregate, coarse aggregate and reinforcement. Here review of some waste materials, whose ash is used as partial replacement to cement in concrete, is presented. Different properties of fresh and hardened concrete, when admixed with ash of waste materials are reviewed. Concrete containing sugar cane bagasse ash, ground nut shell ash, rice husk ash, saw dust ash, and tobacco waste ash are reviewed. After review, it is observed that further studies are required on all waste ashes replacing cement, which will reveal more potential on their usage in concrete. Concrete containing ash of waste materials attained demanded strength within 5% to 20% replacement.


Author(s):  
Wasiq Maqbool Peer

Abstract: Pervious concrete is a concrete containing little or no fine aggregate; it consists of coarse aggregate and cement paste. It seems pervious concrete would be a natural choice for use in structural applications in this age of ‘green building’. It consumes less raw material than normal concrete (no sand), it provides superior insulation values when used in walls, and through the direct drainage of rainwater, it helps recharge groundwater in pavement applications. Due to increase in construction and demolition activities all over the world, the waste concrete after the destruction is not used for any purpose which leads to loss of economy of the country. India is a developing country where urbanization is increasing rapidly which in turn leading to increase of drainage facilities. Pervious concrete helps to allow the water flow into the ground due to interconnected pores. Natural aggregate is becoming scarce, production and shipment is becoming more difficult. In order to overcome this problem, there is need to find a by-product, which can be used to replace the aggregate in conventional concrete mix. Keywords: Pervious Concrete, Partial Replacement, Fly Ash, Cement, Compressive Strength,


2020 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
Arivalagan. S ◽  
Dinesh Kumar K S A ◽  
Sudhakar R

Concrete is the most widely used construction material today. The constituents of concrete are coarse aggregate, fine aggregate, coarse aggregate and water. Concrete plays a major role in the construction industry and a large quantum of concrete is being utilized. River sand, which isone of the constituent used in the production of conventional concrete, has become expensive and also a scarce material. In view of this,the utilization of demolished aggregate which isa waste material has been accepted as building material in many countries for the past three decades. The demand of natural sand in the construction industry has increased a lot resulting in the reduction of sources and an increase in price. Thus an increased need to identify a suitable alternative material from industrial waste in place of river sand, that is eco-friendly and inexpensive construction debris i.e fresh concrete being extensively used as an alternative to the sand in the production of concrete. There is an increase in need to find new alternative materials to replace river sand so that excess river erosion is prevented and high strength concrete is obtained at lower cost. One such material is building construction debris: a by-product obtained during construction and demolition waste. An experimental investigation is carried out on M 25 concrete containing debris during construction in the different range of 20%, 30% & 40% by weight of sand. Material was produced, tested and compared with conventional concrete in terms of workability and strength. These tests were carried out on standard cube of 150×150×150 mm and beam of 700×150×150 mm for 28 days to determine the mechanical properties of concrete.


2019 ◽  
Vol 8 (2) ◽  
pp. 4392-4395

The increasing demand of natural resources for the concrete production has impacted the surroundings and the concern to protect these natural resources is increasing. Lately, handling and management of scrap is the primary issue faced by the countries worldwide. The waste problem is the most important problems facing the world as a source of the environmental pollution. One of the censorious wastes to be control in today is ‘waste tyre’ because; recent development in transportation has create big number of vehicles, which produce huge quantities of used tyres. Disposing such waste tyres is a critical waste management concern around the world at the moment. Various research work had been conducted in the past which had results that showed reduction in the mechanical energy of the concrete. The motive of this study is to use the reshaped waste tyre rubber as partial alteration of coarse aggregate in the concrete and to examine the outcome of providing an mooring hole of10mm in dia on the surface of the rubber gravel which makes the cement plaster to form a cylindrical mooring between the gravel and the concrete as well work as are bar to the rubber gravel thereby, increase withstanding power to failure under load which simultaneously increase the strength. The partial replacements of coarse aggregates are done at 0%, 5%, 10%, 15% and 20% by quantity of coarse gravel. The resulting concrete beams are tested for the physical characteristics of concrete. The Comparison of flexural response of beams are made with ordinary Portland cement concrete (OPCC)and Reshaped Waste Tyre Rubber Aggregate Concrete (RWTRAC)for various compositions of Reshaped Waste Tyre Rubber Aggregate replacement to coarse aggregate. Consequently the tests on RWTRAC beams of 10 % rubber aggregate replacement are conducted and results indicated that all the beams are failed in pure bending region and gives deflection nearly same as the conventional beam with the influence of the ultimate moment. Based on the observations during testing, the beams failed in pure flexural compression failure mode. Ductility factor of RWTRAC beam also showed enhanced performance when compared with the performance of conventional concrete. After testing it is inferred that till 10% of RWTRA replacement, the compressive and flexural strength of concrete is nearly same as the conventional concrete, but from 10 to 20% the strengths are abruptly fallen.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 406
Author(s):  
J Madhan Kumar ◽  
R Kalaiselvan ◽  
Raghul Raj

The most widely used material in the world is concrete, consequently there is a large requirement for raw material of concrete such as Fine Aggregate, Coarse Aggregate and cement. the huge extraction of the aggregate for manufacturing of concrete as serious effect on the environment due to depletion of natural resources and pollution. This affects the eco system to great extent. Hence the project deals with finding replacement for the existing raw material used in concrete by replacing the fine aggregate from river which is largely used in construction by chiton shell. Sea shell is the corpus of the marine organism. The sea shell has been grinded to 4.75mm and then replaced in the concrete. M20 mix was used and cubic specimen were casted for 5 different percentage of partial replacement as 0%, 5%, 10 %, 20%, and 25 %. All the specimens are tested for 7 & 28 days compressive, flexural and split tensile strength. it has been noted that the highest strength is obtained for 25% replacement of chiton shell. it was also observed that  addition of sea shell power in concrete reduced workability hence superplasticizer were added to improve the consistency. 


As construction in India and other developing countries are increasing, the consumption of energy and resources are also increasing in same alarming way. Due to urbanization many industries are developed and the industrial wastage is also increasing day by day which is a serious concern to the environment. Many industries produce various end products, which may be used in construction industry at various places. So we focused on some of the waste materials which can be replaced in conventional concrete, and by then cost of construction can be reduced and is economical, also damage caused to the environment can also be reduced, at the same time landfills can also be reduced. So, we focused on reducing the virgin materials in concrete like cement, fine aggregate and coarse aggregate by replacing them with some waste materials which have same properties of cement, fine aggregate and coarse aggregate. The objective of the present work is to find out the effectiveness of fly ash, quarry dust and crumb rubber by replacing them in varied percentages. Here, cement is replaced by fly ash with percentages as 30%, 40%, 50%, 60% and quarry dust as fine aggregate with percentages of 20%, 30%, 40%, 50% along with crumb rubber as coarse aggregate with percentages as 5%, 10%, 15%, 20%. The results in this study have shown a gradual reduction of compressive strength as we kept on adding the crumbed rubber. Even though the strength obtained for 5% usage of crumbed rubber was quite satisfactory.


Sign in / Sign up

Export Citation Format

Share Document