scholarly journals Hybrid modeling of the human cardiovascular system using NeuralFMUs

2021 ◽  
Vol 2090 (1) ◽  
pp. 012155
Author(s):  
Tobias Thummerer ◽  
Johannes Tintenherr ◽  
Lars Mikelsons

Abstract Hybrid modeling, the combination of first principle and machine learning models, is an emerging research field that gathers more and more attention. Even if hybrid models produce formidable results for academic examples, there are still different technical challenges that hinder the use of hybrid modeling in real-world applications. By presenting NeuralFMUs, the fusion of a Functional Mock-up Unit (FMU), a numerical ODE solver and an artifical neural network, we are paving the way for the use of a variety of first principle models from different modeling tools as parts of hybrid models. This contribution handles the hybrid modeling of a complex, real-world example: Starting with a simplified 1D-fluid model of the human cardiovascular system (arterial side), the aim is to learn neglected physical effects like arterial elasticity from data. We will show that the hybrid modeling process is more comfortable, needs less system knowledge and is therefore less error-prone compared to modeling solely based on first principle. Further, the resulting hybrid model has improved in computation performance, compared to a pure first principle white-box model, while still fulfilling the requirements regarding accuracy of the considered hemodynamic quantities. The use of the presented techniques is explained in a general manner and the considered use-case can serve as example for other modeling and simulation applications in and beyond the medical domain.

2000 ◽  
Vol 39 (02) ◽  
pp. 118-121 ◽  
Author(s):  
S. Akselrod ◽  
S. Eyal

Abstract:A simple nonlinear beat-to-beat model of the human cardiovascular system has been studied. The model, introduced by DeBoer et al. was a simplified linearized version. We present a modified model which allows to investigate the nonlinear dynamics of the cardiovascular system. We found that an increase in the -sympathetic gain, via a Hopf bifurcation, leads to sustained oscillations both in heart rate and blood pressure variables at about 0.1 Hz (Mayer waves). Similar oscillations were observed when increasing the -sympathetic gain or decreasing the vagal gain. Further changes of the gains, even beyond reasonable physiological values, did not reveal another bifurcation. The dynamics observed were thus either fixed point or limit cycle. Introducing respiration into the model showed entrainment between the respiration frequency and the Mayer waves.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1292
Author(s):  
Neziha Akalin ◽  
Amy Loutfi

This article surveys reinforcement learning approaches in social robotics. Reinforcement learning is a framework for decision-making problems in which an agent interacts through trial-and-error with its environment to discover an optimal behavior. Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots. The scope of the paper is focused particularly on studies that include social physical robots and real-world human-robot interactions with users. We present a thorough analysis of reinforcement learning approaches in social robotics. In addition to a survey, we categorize existent reinforcement learning approaches based on the used method and the design of the reward mechanisms. Moreover, since communication capability is a prominent feature of social robots, we discuss and group the papers based on the communication medium used for reward formulation. Considering the importance of designing the reward function, we also provide a categorization of the papers based on the nature of the reward. This categorization includes three major themes: interactive reinforcement learning, intrinsically motivated methods, and task performance-driven methods. The benefits and challenges of reinforcement learning in social robotics, evaluation methods of the papers regarding whether or not they use subjective and algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and proposed solutions, the points that remain to be explored, including the approaches that have thus far received less attention is also given in the paper. Thus, this paper aims to become a starting point for researchers interested in using and applying reinforcement learning methods in this particular research field.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 61896-61903 ◽  
Author(s):  
Andrzej Polanczyk ◽  
Michal Podgorski ◽  
Maciej Polanczyk ◽  
Aleksandra Piechota-Polanczyk ◽  
Christoph Neumayer ◽  
...  

1980 ◽  
Vol 135 (6) ◽  
pp. 1153-1160 ◽  
Author(s):  
TF Meaney ◽  
MA Weinstein ◽  
E Buonocore ◽  
W Pavlicek ◽  
GP Borkowski ◽  
...  

Author(s):  
Ravishankar Palaniappan

Data visualization has the potential to aid humanity not only in exploring and analyzing large volume datasets but also in identifying and predicting trends and anomalies/outliers in a “simple and consumable” approach. These are vital to good and timely decisions for business advantage. Data Visualization is an active research field, focusing on the different techniques and tools for qualitative exploration in conjunction with quantitative analysis of data. However, an increase in volume, multivariate, frequency, and interrelationships of data will make the data visualization process notoriously difficult. This necessitates “innovative and iterative” display techniques. Either overlooking any dimensions/relationships of data structure or choosing an unfitting visualization method will quickly lead to a humanitarian uninterpretable “junk chart,” which leads to incorrect inferences or conclusions. The purpose of this chapter is to introduce the different phases of data visualization and various techniques which help to connect and empower data to mine insights. It exemplifies on how “data visualization” helps to unravel the important, meaningful, and useful insights including trends and outliers from real world datasets, which might otherwise be unnoticed. The use case in this chapter uses both simulated and real-world datasets to illustrate the effectiveness of data visualization.


Author(s):  
Haoxiang Xia ◽  
Huili Wang ◽  
Zhaoguo Xuan

As a key sub-field of social dynamics and sociophysics, opinion dynamics utilizes mathematical and physical models and the agent-based computational modeling tools, to investigate the spreading of opinions in a collection of human beings. This research field stems from various disciplines in social sciences, especially the social influence models developed in social psychology and sociology. A multidisciplinary review is given in this paper, attempting to keep track of the historical development of the field and to shed light on its future directions. In the review, the authors discuss the disciplinary origins of opinion dynamics, showing that the combination of the social processes, which are conventionally studied in social sciences, and the analytical and computational tools, which are developed in mathematics, physics and complex system studies, gives birth to the interdisciplinary field of opinion dynamics. The current state of the art of opinion dynamics is then overviewed, with the research progresses on the typical models like the voter model, the Sznajd model, the culture dissemination model, and the bounded confidence model being highlighted. Correspondingly, the future directions of this academic field are envisioned, with an advocation for closer synthesis of the related disciplines.


2009 ◽  
pp. 950-960
Author(s):  
Kazuhisa Seta

In ontological engineering research field, the concept of “task ontology” is well-known as a useful technology to systemize and accumulate the knowledge to perform problem-solving tasks (e.g., diagnosis, design, scheduling, and so on). A task ontology refers to a system of a vocabulary/ concepts used as building blocks to perform a problem-solving task in a machine readable manner, so that the system and humans can collaboratively solve a problem based on it. The concept of task ontology was proposed by Mizoguchi (Mizoguchi, Tijerino, & Ikeda, 1992, 1995) and its validity is substantiated by development of many practical knowledge-based systems (Hori & Yoshida, 1998; Ikeda, Seta, & Mizoguchi, 1997; Izumi &Yamaguchi, 2002; Schreiber et al., 2000; Seta, Ikeda, Kakusho, & Mizoguchi, 1997). He stated: …task ontology characterizes the computational architecture of a knowledge-based system which performs a task. The idea of task ontology which serves as a system of the vocabulary/concepts used as building blocks for knowledge-based systems might provide an effective methodology and vocabulary for both analyzing and synthesizing knowledge-based systems. It is useful for describing inherent problem-solving structure of the existing tasks domain-independently. It is obtained by analyzing task structures of real world problem. ... The ultimate goal of task ontology research is to provide a theory of all the vocabulary/concepts necessary for building a model of human problem solving processes. (Mizoguchi, 2003) We can also recognize task ontology as a static user model (Seta et al., 1997), which captures the meaning of problem-solving processes, that is, the input/output relation of each activity in a problem-solving task and its effects on the real world as well as on the humans’ mind.


Author(s):  
Srdjan Zivkovic ◽  
Krzystof Miksa ◽  
Harald Kühn

It has been acknowledged that model-based approaches and domain-specific modeling (DSM) languages, methods and tools are beneficial for the engineering of increasingly complex systems and software. Instead of general-purpose one-size-fits-all modeling languages, DSM methods facilitate model-based analysis and design of complex systems by providing modeling concepts tailored to the specific problem domain. Furthermore, hybrid DSM methods combine single DSM methods into integrated modeling methods, to allow for multi-perspective modeling. Metamodeling platforms provide flexible means for design and implementation of such hybrid modeling methods and appropriate domain-specific modeling tools. In this paper, we report on the conceptualization of a hybrid DSM method in the domain of network physical devices management, and its implementation based on the ADOxx metamodeling platform. The method introduces a hybrid modeling approach. A dedicated DSM language (DSML) is used to model the structure of physical devices and their configurations, whereas the formal language for knowledge representation OWL2 is used to specify configuration-related constraints. The outcome of the work is a hybrid, semantic technology-enabled DSM tool that allows for efficient and consistency-preserving model-based configuration of network equipment.


Sign in / Sign up

Export Citation Format

Share Document