scholarly journals Research of the possibility of improving the traction and economic characteristics of a supersonic passenger aircraft engine through minimal modifications to the high-pressure compressor

2021 ◽  
Vol 2094 (4) ◽  
pp. 042055
Author(s):  
D Yu Strelets ◽  
S A Serebryansky ◽  
M V Shkurin

Abstract In this paper, the possibilities of improving the traction and economic characteristics of a by-pass turbojet engine of a high-speed passenger aircraft due to minimal modifications of the high-pressure compressor. A thermodynamic model of the investigated engine of a new design in a three-dimensional layout was formed using an automated multicriteria optimization process. A computational assessment of the change in the characteristics of compressor modifications is carried out based on a numerical model of gas dynamics.

Author(s):  
Philipp Gilge ◽  
Andreas Kellersmann ◽  
Jens Friedrichs ◽  
Jörg R Seume

Deterioration of axial compressors is in general a major concern in aircraft engine maintenance. Among other effects, roughness in high-pressure compressor reduces the pressure rise and thus efficiency, thereby increasing the specific fuel consumption of an engine. Therefore, it is important to improve the understanding of roughness on compressor blading and their impact on compressor performance. To investigate the surface roughness of rotor blades of a compressors, different stages of an axial high-pressure compressor and a first-stage blisk (BLade–Integrated–dISK) of a regional aircraft engine is measured by a three-dimensional laser scanning microscope. Fundamental types of roughness structures can be identified: impacts in different sizes, depositions as isotropically distributed single elements with steep flanks and anisotropic roughness structures direct approximately normal to the flow direction. To characterise and quantify the roughness structures in more detail, roughness parameters were determined from the measured surfaces. The quantification showed that the roughness height varies through the compressor depending on the stage, position and the blade side. Overall complex roughness structures of different shape, height and size are detected regardless of the type of the blades.


Author(s):  
Alain Batailly ◽  
Mathias Legrand ◽  
Antoine Millecamps ◽  
François Garcin

Recent studies focused on the numerical prediction of structural instabilities that may arise in rotating components of an aircraft engine. These instabilities are commonly classified into two categories: those induced by aerodynamic phenomena (such as the pressure applied on the blade by the incoming air flow) and those related to structural phenomena (such as potential blade/casing contacts). Based on an existing numerical strategy for the analysis of rotor/stator interactions induced by unilateral contacts between rotating and static components, this paper aims at combining both types of instabilities and provides a qualitative analysis of structural interactions that may arise within the high-pressure compressor of an aircraft engine. The aerodynamic pressure on the blade is simplified as a sinusoidal external load whose frequency depends on the number of upstream guide vanes. Results are presented both in time and frequency domains. Detailed bifurcation diagrams and Poincaré maps underline the fundamental differences in the nature of the witnessed interactions with and without aerodynamic loading on the blade.


1997 ◽  
Vol 119 (1) ◽  
pp. 51-60 ◽  
Author(s):  
C. A. Long ◽  
A. P. Morse ◽  
P. G. Tucker

This paper makes comparisons between CFD computations and experimental measurements of heat transfer for the axial throughflow of cooling air in a high-pressure compressor spool rig and a plane cavity rig. The heat transfer measurements are produced using fluxmeters and by the conduction solution method from surface temperature measurements. Numerical predictions are made by solving the Navier–Stokes equations in a full three-dimensional, time-dependent form using the finite-volume method. Convergence is accelerated using a multigrid algorithm and turbulence modeled using a simple mixing length formulation. Notwithstanding systematic differences between the measurements and the computations, the level of agreement can be regarded as promising in view of the acknowledged uncertainties in the experimental data, the limitations of the turbulence model and, perhaps more importantly, the modest grid densities used for the computations.


1998 ◽  
Vol 120 (2) ◽  
pp. 215-223 ◽  
Author(s):  
C. R. LeJambre ◽  
R. M. Zacharias ◽  
B. P. Biederman ◽  
A. J. Gleixner ◽  
C. J. Yetka

Two versions of a three-dimensional multistage Navier–Stokes code were used to optimize the design of an eleven-stage high-pressure compressor. The first version of the code utilized a “mixing plane” approach to compute the flow through multistage machines. The effects due to tip clearances and flowpath cavities were not modeled. This code was used to minimize the regions of separation on airfoil and endwall surfaces for the compressor. The resulting compressor contained bowed stators and rotor airfoils with contoured endwalls. Experimental data acquired for the HPC showed that it achieved 2 percent higher efficiency than a baseline machine, but it had 14 percent lower stall margin. Increased stall margin of the HPC was achieved by modifying the stator airfoils without compromising the gain in efficiency as demonstrated in subsequent rig and engine tests. The modifications to the stators were defined by using the second version of the multistage Navier–Stokes code, which models the effects of tip clearance and endwall flowpath cavities, as well as the effects of adjacent airfoil rows through the use of “bodyforces” and “deterministic stresses.” The application of the Navier–Stokes code was assessed to yield up to 50 percent reduction in the compressor development time and cost.


Author(s):  
C. R. LeJambre ◽  
R. M. Zacharias ◽  
B. P. Biederman ◽  
A. J. Gleixner ◽  
C. J. Yetka

Two versions of a three dimensional multistage Navier-Stokes code were used to optimize the design of an eleven stage high pressure compressor. The first version of the code utilized a “mixing plane” approach to compute the flow through multistage machines. The effects due to tip clearances and flowpath cavities were not modeled. This code was used to minimize the regions of separation on airfoil and endwall surfaces for the compressor. The resulting compressor contained bowed stators and rotor airfoils with contoured endwalls. Experimental data acquired for the HPC showed that it achieved 2% higher efficiency than a baseline machine, but it had 14% lower stall margin. Increased stall margin of the HPC was achieved by modifying the stator airfoils without compromising the gain in efficiency as demonstrated in subsequent rig and engine tests. The modifications to the stators were defined by using the second version of the multistage Navier-Stokes code, which models the effects of tip clearance and endwall flowpath cavities, as well as the effects of adjacent airfoil rows through the use of “bodyforces” and “deterministic stresses”. The application of the Navier-Stokes code was assessed to yield up to 50% reduction in the compressor development time and cost.


Author(s):  
Alain Batailly ◽  
Quentin Agrapart ◽  
Antoine Millecamps

The development of a predictive numerical strategy for the simulation of rotor/stator interactions is a concern for several aircraft engine manufacturers. As a matter of fact, modern designs of aircraft engines feature reduced operating clearances between rotating and static components which yields more frequent structural contacts. Subsequent interaction phenomena (be it rubbing events, modal interaction or whirl motions) are not yet fully understood. For that reason, experimental data obtained from set-ups dedicated to the simulation of such interactions are scrutinized and are key in: (1) increasing the knowledge of the interaction phenomena and (2) allowing for a calibration of the numerical models with realistic events. In this contribution, the focus is made on an experimental set-up in Snecma facilities. It features a full-scale high-pressure compressor stage and aims at simulating contact induced interactions between one of the blades (slightly longer than the other ones) and the surrounding abradable coating that is deposited along the casing circumference. For this experimental set-up, it is found that the witnessed interaction involves a single blade — thus it should be analyzed as a sequence of rubbing events — and more specifically its first torsional mode, which is its second free-vibration mode. The focus is made both on the presentation of the experimental set-up and on the confrontation with the numerical results. Numerical results are analyzed by means of adaptative signal processing techniques and the consistency between numerical results and experimental observations is underlined both in time and frequency domains. In particular, the numerical strategy developed for Snecma is shown to predict very accurately the nature of the interaction as wear patterns obtained experimentally and numerically are a match. This numerical/experimental confrontation is the first attempt to calibrate a sophisticated numerical strategy with experimental data acquired within the high-pressure compressor of an aircraft engine for the simulation of rotor/stator interactions. Contrary to previous studies carried out within the low-pressure compressor of an aircraft engine, this interaction is found to be non-divergent: high amplitudes of vibration are experimentally observed and numerically predicted over a very short period of time. The ability of the numerical strategy to predict torsion induced interactions opens avenues for further analyses in turbine stages and with more sophisticated models including mistuned bladed disks and multi-stage components.


Author(s):  
Alexander Lange ◽  
Matthias Voigt ◽  
Konrad Vogeler ◽  
Henner Schrapp ◽  
Erik Johann ◽  
...  

The present paper addresses a non-deterministic CFD simulation of a high-pressure compressor (HPC) stage. The investigation focuses on the determination of the influence of the manufacturing scatter of compressor blades on the aerodynamic performance of the analyzed HPC stage. A set of 150 blades was scanned using an optical 3D digitizer to obtain a three-dimensional point cloud representing the surface of the blades. Classical profile parameters were identified at several sections of constant spanwise coordinate. The radial stacking of these parameters forms a parameter vector that constructs the airfoil model of each scanned blade. Consequently these parameters were used to define the geometric variability of the entire measured blade set. A statistical analysis of the distribution of these parameters defines the input data of the probabilistic 3D CFD simulation. The Monte-Carlo method is used to identify the scatter of the performance values of the HPC stage and their sensitivity to the geometric variability of profile parameters.


Sign in / Sign up

Export Citation Format

Share Document