scholarly journals Improved UKF-SLAM with Lie Group Operation and Robust Feature Tracking for Motion Vehicles

2021 ◽  
Vol 2095 (1) ◽  
pp. 012036
Author(s):  
Xin Huang ◽  
Zuoxian Liang ◽  
Kai Zhang ◽  
Pingyuan Liu

Abstract This paper proposes an improved simultaneous localization and mapping (SLAM) algorithm based on tightly coupled camera images and IMU data, which provides accurate and robust localization for autonomous vehicles and unmanned aerial vehicles (UAV), especially for those in GPS-denied environments. Many research efforts have demonstrated the effectiveness of fusing camera images and inertial data with the Unscented Kalman filter (UKF), but there is still one tricky problem about the non-linearity of the kinematics of rotations. To address this issue, we propose a novel UKF-SLAM approach by rebuilding system and measurement models based on the Lie group and Lie algebra, which obtains state estimates with reasonably high accuracy. Besides, we also offer a new method to handle corner matching outliers, which only causes slightly additional computation costs but eliminates outliers and enhances corner tracking robustness. Results from extensive experimental data have validated the effectiveness of the proposed approach, and this method also achieves comparable precision to the state-of-art.

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Yunpei Liang ◽  
Jiahui Dai ◽  
Kequan Wang ◽  
Xiaobo Li ◽  
Pengcheng Xu

This paper proposes an innovative simultaneous localization and mapping (SLAM) algorithm which combines a strong tracking filter (STF), an unscented Kalman filter (UKF), and a particle filter (PF) to deal with the low accuracy of unscented FastSLAM (UFastSLAM). UFastSLAM lacks the capacity for online self-adaptive adjustment, and it is easily influenced by uncertain noise. The new algorithm updates each Sigma point in UFastSLAM by an adaptive algorithm and obtains optimized filter gain by the STF adjustment factor. It restrains the influence of uncertain noise and initial selection. Therefore, the state estimation would converge to the true value rapidly and the accuracy of system state estimation would be improved eventually. The results of simulations and practical tests show that strong tracking unscented FastSLAM (STUFastSLAM) has a significant improvement in accuracy and robustness.


Author(s):  
M. Abd Rabbou ◽  
A. El-Rabbany

This research investigates the performance of non-linear estimation filtering for GPS-PPP/MEMS-based inertial system. Although integrated GPS/INS system involves nonlinear motion state and measurement models, the most common estimation filter employed is extended Kalman filter. In this paper, both unscented Kalman filter and particle filter are developed and compared with extended Kalman filter. Tightly coupled mechanization is adopted, which is developed in the raw measurements domain. Un-differenced ionosphere-free linear combination of pseudorange and carrier-phase measurements is employed. The performance of the proposed non-linear filters is analyzed using real test scenario. The test results indicate that comparable accuracy-level are obtained from the proposed filters compared with extended Kalman filter in positioning, velocity and attitude when the measurement updates from GPS measurements are available.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hongjian Wang ◽  
Guixia Fu ◽  
Juan Li ◽  
Zheping Yan ◽  
Xinqian Bian

This work proposes an improved unscented Kalman filter (UKF)-based simultaneous localization and mapping (SLAM) algorithm based on an adaptive unscented Kalman filter (AUKF) with a noise statistic estimator. The algorithm solves the issue that conventional UKF-SLAM algorithms have declining accuracy, with divergence occurring when the prior noise statistic is unknown and time-varying. The new SLAM algorithm performs an online estimation of the statistical parameters of unknown system noise by introducing a modified Sage-Husa noise statistic estimator. The algorithm also judges whether the filter is divergent and restrains potential filtering divergence using a covariance matching method. This approach reduces state estimation error, effectively improving navigation accuracy of the SLAM system. A line feature extraction is implemented through a Hough transform based on the ranging sonar model. Test results based on unmanned underwater vehicle (UUV) sea trial data indicate that the proposed AUKF-SLAM algorithm is valid and feasible and provides better accuracy than the standard UKF-SLAM system.


2011 ◽  
Vol 08 (01) ◽  
pp. 223-243 ◽  
Author(s):  
RAMAZAN HAVANGI ◽  
MOHAMMAD TESHNEHLAB ◽  
MOHAMMAD ALI NEKOUI

Extended Kalman filter (EKF) has been used as a popular choice to solve simultaneous localization and mapping (SLAM) problem. However, SLAM algorithm based on EKF-SLAM has two serious drawbacks, namely the linear approximation of nonlinear functions and the calculation of Jacobin matrices. For solving these problems, SLAM algorithm based on unscented Kalman filter (UKF-SLAM) has been recently proposed. However, the performance of the UKF-SLAM and thus the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices respectively denoted by Qk and Rk. Imprecise knowledge of these statistics can cause significant degradation in performance. This article proposes the development of an adaptive neuro-fuzzy UKF (ANFUKF) for SLAM. The Adaptive neuro-fuzzy attempts to estimate the elements of Rk matrix in the UKF-SLAM algorithm at each sampling instant when measurement updating step is carried out. The adaptive neuro-fuzzy inference system (ANFIS) supervises the performance of the UKF-SLAM with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (GD) to minimize the differences of the actual value of the covariance of the residual with its theoretical value as much as possible. The simulation results show the effectiveness of the proposed algorithm.


2021 ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available. Keywords: GPS; PPP; INS; EKF; UKF; UPF; tightly coupled


2021 ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available. Keywords: GPS; PPP; INS; EKF; UKF; UPF; tightly coupled


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


2021 ◽  
Vol 13 (12) ◽  
pp. 2351
Author(s):  
Alessandro Torresani ◽  
Fabio Menna ◽  
Roberto Battisti ◽  
Fabio Remondino

Mobile and handheld mapping systems are becoming widely used nowadays as fast and cost-effective data acquisition systems for 3D reconstruction purposes. While most of the research and commercial systems are based on active sensors, solutions employing only cameras and photogrammetry are attracting more and more interest due to their significantly minor costs, size and power consumption. In this work we propose an ARM-based, low-cost and lightweight stereo vision mobile mapping system based on a Visual Simultaneous Localization And Mapping (V-SLAM) algorithm. The prototype system, named GuPho (Guided Photogrammetric System) also integrates an in-house guidance system which enables optimized image acquisitions, robust management of the cameras and feedback on positioning and acquisition speed. The presented results show the effectiveness of the developed prototype in mapping large scenarios, enabling motion blur prevention, robust camera exposure control and achieving accurate 3D results.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2004 ◽  
Author(s):  
Linlin Xia ◽  
Qingyu Meng ◽  
Deru Chi ◽  
Bo Meng ◽  
Hanrui Yang

The development and maturation of simultaneous localization and mapping (SLAM) in robotics opens the door to the application of a visual inertial odometry (VIO) to the robot navigation system. For a patrol robot with no available Global Positioning System (GPS) support, the embedded VIO components, which are generally composed of an Inertial Measurement Unit (IMU) and a camera, fuse the inertial recursion with SLAM calculation tasks, and enable the robot to estimate its location within a map. The highlights of the optimized VIO design lie in the simplified VIO initialization strategy as well as the fused point and line feature-matching based method for efficient pose estimates in the front-end. With a tightly-coupled VIO anatomy, the system state is explicitly expressed in a vector and further estimated by the state estimator. The consequent problems associated with the data association, state optimization, sliding window and timestamp alignment in the back-end are discussed in detail. The dataset tests and real substation scene tests are conducted, and the experimental results indicate that the proposed VIO can realize the accurate pose estimation with a favorable initializing efficiency and eminent map representations as expected in concerned environments. The proposed VIO design can therefore be recognized as a preferred tool reference for a class of visual and inertial SLAM application domains preceded by no external location reference support hypothesis.


Sign in / Sign up

Export Citation Format

Share Document