scholarly journals Optimal Design of Brake Disc Structures for Brake Squeal Suppression

2021 ◽  
Vol 2101 (1) ◽  
pp. 012026
Author(s):  
Gongyu Pan ◽  
Zhikang Liu ◽  
Qizhao Xu ◽  
Lin Chen

Abstract Aiming at the brake squeal problem of automobile disc brakes, an optimization design method of brake disc structure based on the weighted brake squeal tendency coefficient is proposed. This method is based on the brake squeal complex modal finite element model of a certain disc brake. Based on the validity of the model verified by the bench test, the single-sided disc surface height of the brake disc, the height of the radiating rib, the elastic modulus and the disc are selected. The four key structural parameters of the cap height are used as design variables. Taking the weighted braking squeal tendency coefficient proposed in this paper as the optimization target, the response surface method and the central composite test design are combined to construct a weighted braking squeal tendency coefficient response surface model, and use multi-island genetic algorithm to optimize the model. The results show that the optimization design method proposed in this paper can greatly improve the optimization efficiency while effectively reducing the screaming tendency of the disc brake in the full frequency band, so as to achieve the purpose of improving the NVH performance of the disc brake and improving the comfort of the car.

2009 ◽  
Vol 419-420 ◽  
pp. 89-92
Author(s):  
Zhuo Yi Yang ◽  
Yong Jie Pang ◽  
Zai Bai Qin

Cylinder shell stiffened by rings is used commonly in submersibles, and structure strength should be verified in the initial design stage considering the thickness of the shell, the number of rings, the shape of ring section and so on. Based on the statistical techniques, a strategy for optimization design of pressure hull is proposed in this paper. Its central idea is that: firstly the design variables are chosen by referring criterion for structure strength, then the samples for analysis are created in the design space; secondly finite element models corresponding to the samples are built and analyzed; thirdly the approximations of these analysis are constructed using these samples and responses obtained by finite element model; finally optimization design result is obtained using response surface model. The result shows that this method that can improve the efficiency and achieve optimal intention has valuable reference information for engineering application.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Wei Yang ◽  
Ruofu Xiao

This paper presents an automatic multiobjective hydrodynamic optimization strategy for pump–turbine impellers. In the strategy, the blade shape is parameterized based on the blade loading distribution using an inverse design method. An efficient response surface model relating the design parameters and the objective functions is obtained. Then, a multiobjective evolutionary algorithm is applied to the response surface functions to find a Pareto front for the final trade-off selection. The optimization strategy was used to redesign a scaled pump–turbine. Model tests were conducted to validate the final design and confirm the validity of the design strategy.


2011 ◽  
Vol 255-260 ◽  
pp. 1939-1943 ◽  
Author(s):  
Miao Yi Deng ◽  
Guang Hui Li

Employing response surface method, the complicated implicit relationship between bridge structural static-load responses and structural parameters is approximately represented by the simple explicit function. Based on this response surface model (function), the structural finite element model parameters can be easily updated by selected optimization procedure. By a numerical example of a two-span continuous beam, the essential theory and implementation of structural static response surface based finite element model updating are presented in the paper.


2021 ◽  
Vol 261 ◽  
pp. 01030
Author(s):  
Shuai Pu ◽  
Wei Huang

In this paper, Optimization design of heat pipe heat exchanger (HPHX) is processed utilizing the Response Surface Methodology (RSM). The response surface model was built by regressive analysis using Latin hypercube experimental design method and numerical simulation. Through response surface analysis, it is found that the two input variables affecting the performance of HPHX are the heat pipe pitch and the Inlet and outlet distance. Moreover, the maximum value of the overall performance factor on the response surface is searched using genetic algorithm, and the optimal values of four input variables are obtained.


2014 ◽  
Vol 548-549 ◽  
pp. 383-388
Author(s):  
Zhi Wei Chen ◽  
Zhe Cui ◽  
Yi Jin Fu ◽  
Wen Ping Cui ◽  
Li Juan Dong ◽  
...  

Parametric finite element model for a commonly used telescopic boom structure of a certain type of truck-mounted crane has been established. Static analysis of the conventional design configuration was performed first. And then an optimization process has been carried out to minimize the total weight of the telescopic structures. The design variables include the geometric shape parameters of the cross-sections and the integrated structural parameters of the telescopic boom. The constraints include the maximum allowable equivalent stresses and the flexure displacements at the tip of the assembled boom structure in both the vertical direction and the circumferential direction of the rotating plane. Compared with the conventional design, the optimization design has achieved a significant weight reduction of up to 24.3%.


2011 ◽  
Vol 66-68 ◽  
pp. 1240-1244
Author(s):  
Sheng Yao Gao ◽  
De Shi Wang ◽  
Qi Zheng Zhou

As the most dominative component under stress in an external combustion cam engine, the working condition of piston is very rigor. Once new design type and technical improvement is applied, it is necessary to analysis its thermal load and take secure steps. And the finite element model on each conditions of thermal is calculated, which is used to estimate the temperature field and provide a theoretical basis for further structural strength analysis and optimization design. Choosing analysis results of the piston as reference and taking five structural parameters of the piston as design variables, two objective functions including piston mass and maximal Von Mises stress are respectively considered. The optimum design of the piston is executed and the results indicate that it is feasible to improve temperature field and strength of the piston. These results enrich and develop the research on structural analysis and optimization of spatial engine, which are of guiding significance for analyzing engine strength and related problem in theoretically.


Author(s):  
Kyung-Nam Chung ◽  
Yang-Ik Kim ◽  
Ju-Heon Sung ◽  
In-Ho Chung ◽  
Sang-Hoon Shin

In this study, an optimization design method is established for a rotor blade of a Curtis turbine. Bezier curve is generally used to define the profile of turbine blades. However, this curve is not proper to a supersonic impulse turbine. Section shape of a supersonic turbine blade is composed of straight lines and circular arcs. That is, it has several constraints to define the section shape. Thus, in this study, a blade design method is developed by using B-spline curve in which local control is possible. The turbine blade section has been changed by varying three design parameters of exit blade angle, stagger angle and maximum camber. Then flow analyses have been carried out for the sections. Lift-drag ratio of the blade section is used as the object function, and it is maximized in the optimization. Second-order response surface model is employed to express the object function as a function of design parameters. Central composite design method is used to reduce the number of design points. Then, an evolution strategy is employed to obtain the optimized section of the Curtis turbine blade.


Author(s):  
Toru Matsushima ◽  
Shinji Nishiwaki ◽  
Shintarou Yamasaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

Minimizing brake squeal is one of the most important issues in the development of high performance braking systems. Recent advances in numerical analysis, such as finite element analysis, have enabled sophisticated analysis of brake squeal phenomena, but current design methods based on such numerical analyses still fall short in terms of providing concrete performance measures for minimizing brake squeal in high performance design drafts at the conceptual design phase. This paper proposes an optimal design method for disc brake systems that specifically aims to reduce brake squeal by appropriately modifying the shapes of the brake system components. First, the relationships between the occurrence of brake squeal and the geometry and characteristics of various components is clarified, using a simplified analysis model. Next, a new design performance measure is proposed for evaluating brake squeal performance and an optimization problem is then formulated using this performance measure as an objective function. The optimization problem is solved using Genetic Algorithms. Finally, a design example is presented to examine the features of the optimal solutions and confirm that the proposed method can yield useful design information for the development of high performance braking systems that minimize brake squeal.


2014 ◽  
Vol 543-547 ◽  
pp. 154-157 ◽  
Author(s):  
Wei Liu ◽  
An Lin Wang ◽  
Xue Wen Shan ◽  
Xiao Lu Zhang ◽  
Tao Jiang

To reduce the cavitation occurring on valve plate of typical Swashplate piston pump, an optimization design method was introduced to quantitively analyse the accurate relationship between structural jet grooves parameters and cavitation.Using the CFD method, the sunking and discharging process in piston pump was simulated dynamically.The damp grooves structure effect on both jet angle and pressure shock were analysed visually with a series of different parametrical grooves.By establishing parametrical damp groove model, the piston pumps dynamic analysis was integrated with the technologies of CFD analysis, experimental design and approximation model, etc.The mathematical model of plunger pressure in oil back period, jet angle and structural parameters of damp groove were established in the form of second-order RSM model. The damp groove structure of valve plate was optimized on the basis of the RSM model.Test data show that the anti-cavitation performance of optimized valve plate was increased obviouslyAnd this method provided theoretical foundation for the structure design of damp groove.


Sign in / Sign up

Export Citation Format

Share Document