scholarly journals Raman studies of amorphous nanocarbon obtained by laser sputtering

2021 ◽  
Vol 2103 (1) ◽  
pp. 012093
Author(s):  
I A Eliseyev ◽  
A N Smirnov ◽  
V Yu Davydov ◽  
A V Platonov ◽  
D A Yavsin ◽  
...  

Abstract The structural properties of amorphous nanocarbon films fabricated by laser sputtering of a graphite target are investigated by means of Raman spectroscopy. Analysis of the spectral features in the region of 100–3600 cm-1 allowed us to determine the allotrope composition of the films and the degree of disorder in terms of average crystallite size. The results obtained are important for application of such films in the field of electrode coatings.

2017 ◽  
Vol 17 ◽  
pp. 127-130
Author(s):  
J. Dhanalakshmi ◽  
D. Pathinettam Padiyan

Dy2O3-TiO2 nanocomposites with different weight percentage (0, 2, 4, 8 & 10)Dy were synthesized bysol-gel method and named as 0DT, 2DT, 4DT, 6DT, 8DT and 10DT. The structural properties of these nanocomposites are characterized by X-ray diffraction (XRD) and Raman spectroscopy. XRD results show that Dy2O3-TiO2 nanocomposites have anatase phase with tetragonal structure. The average crystallite size of the Dy2O3-TiO2 nanocomposites lies between 10 to 18 nm.Coupling of Dy with TiO2 shifts the Raman band to higher wavenumber side indicating the creation of oxygen vacancies in the TiO2 lattice.


Author(s):  
D. J. Bailey ◽  
M. C. Stennett ◽  
J. Heo ◽  
N. C. Hyatt

AbstractSEM–EDX and Raman spectroscopy analysis of radioactive compounds is often restricted to dedicated instrumentation, within radiological working areas, to manage the hazard and risk of contamination. Here, we demonstrate application of WetSEM® capsules for containment of technetium powder materials, enabling routine multimodal characterisation with general user instrumentation, outside of a controlled radiological working area. The electron transparent membrane of WetSEM® capsules enables SEM imaging of submicron non-conducting technetium powders and acquisition of Tc Lα X-ray emission, using a low cost desktop SEM–EDX system, as well as acquisition of good quality μ-Raman spectra using a 532 nm laser.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Ana M. Herrero ◽  
Claudia Ruiz-Capillas

Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.


Author(s):  
Linfei Yang ◽  
Jianjun Jiang ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Meiling Hong ◽  
...  

The vibrational, electrical and structural properties of Ga2S3 were explored by Raman spectroscopy, EC measurements, HRTEM and First-principles theoretical calculations under different pressure environments up to 36.4 GPa.


2008 ◽  
Vol 368-372 ◽  
pp. 784-786 ◽  
Author(s):  
Jun Yang ◽  
Zhen Feng Zhu ◽  
Jing Ping Li

A W/O microemulsion system composed of OP-emolsifier / water / cyclohexane / 1-Pentanol was adopted to prepare ultrafine Ce1-xPrxO2 powder via the reaction between the precipitants of cerium and praseodymium salt solved in the nano reactors. The influence of the annealing conditions on the preparation of Ce1-xPrxO2 powder was investigated. It was shown that, with the increase of calcination temperature from 400 °C to 800 °C, the average crystallite size of the particles increases from 9.5 nm to 25.8 nm. FE-SEM images showed that shape of the particles is layered and sheet-like.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Tristan Pascart ◽  
Guillaume Falgayrac ◽  
Henri Migaud ◽  
Jean-François Quinchon ◽  
Laurène Norberciak ◽  
...  

2015 ◽  
Vol 31 (2) ◽  
pp. 025002 ◽  
Author(s):  
S Filippov ◽  
F Ishikawa ◽  
W M Chen ◽  
I A Buyanova

Sign in / Sign up

Export Citation Format

Share Document