ultrafine powder
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 21)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiang Zheng ◽  
Tao-Xiu Xiong ◽  
Ke Zhang ◽  
Fu-Chen Zhou ◽  
Hui-Ying Wang ◽  
...  

Aim and Objective. To study the effect of Dendrobium officinale ultrafine powder (DOFP) on the intestinal mucosal barrier in rats with ulcerative colitis (UC) induced by dextran sulfate sodium (DSS). Materials and Methods. After intragastric administration of DOFP for 3 weeks, the rat UC model was made by the administration of 4% oral DSS solution for one week, and the drug was given at the same time. During the experiment, the disease activity index (DAI) score of the rats was regularly computed. At the end of the experiment, the blood routine indexes of rats were obtained. The histopathological changes in the colon were monitored by hematoxylin-eosin (H&E) and PAS staining and observation of ultrastructural changes in the colon by transmission electron microscope. Occludin expression in the colon was monitored by Western blot, the expression of claudin-1 and ZO-1 in the colon was detected by immunofluorescence, and the expression of TNF-α, IL-6, and IL-1β in the colon was detected by immunohistochemistry. Results. The results firstly indicated that DOFP could significantly alleviate the signs and symptoms of the DSS-induced rats UC model, which manifested as improvement of body weight loss, increase of colon length, and improvement of the symptoms of diarrhea and hematochezia. Then, results from histopathology, blood routine examination, and transmission electron microscope analysis further implied that DOFP could dramatically reduce inflammatory cell infiltration and restore intestinal epithelial barrier integrity. In addition, the experiments of Western Blot analysis, immunofluorescence, and PAS staining also further confirmed that DOFP could markedly increase related protein expressions of the intestinal barrier and mucus barrier, as the expression of occludin, claudin-1, and ZO-1 in the colon significantly decreased. The experiments of immunohistochemistry confirmed that DOFP could markedly decrease protein expression levels of inflammatory cytokines TNF-α, IL-6, and IL-1β. Conclusion. DOFP notably alleviated inflammatory lesions, repaired the colon mucosa damage by promoting the expression of tight junction proteins occludin, claudin-1, and ZO-1 and inhibiting the release of inflammatory factors TNF-α, IL-6, and IL-1β, and finally achieved the purpose of treating UC.


2021 ◽  
Vol 1 ◽  
pp. 125
Author(s):  
Rova Karine Rajaonarivony ◽  
Xavier Rouau ◽  
Charlène Fabre ◽  
Claire Mayer-Laigle

Background: Lignocellulosic biomass has many functionalities that hold huge potential for material, energy or chemistry applications. To support advanced applications, the biomass must be milled into ultrafine powder to increase reactivity. This milling unit operation needs to be fully mastered to deliver high-quality standard end-products. Here we studied the relationship between the characteristics of the starting lignocellulosic plant material and the properties of the resulting ultrafine powder in different ball-mill process routes. Methods: Two lignocellulosic biomasses (pine bark and wheat straw) with contrasted compositional and mechanical properties were milled using three ball-mill set-ups delivering different balances of impact force and attrition force. The resulting powders were analysed for particle characteristics (size, agglomeration extent, shape) and powder flow properties (compressibility, cohesion) using a dynamic powder rheometer. Results: Pine bark is more amenable to a fast particle size reduction than the fibrous wheat straw. The resulting pine bark powders appear less compressible but much more cohesive than the straw powders due to particle shape, density and composition factors. The mill set-up working by attrition as dominant mechanical force (vibratory ball mill) produced a mix of large, elongated particles and higher amounts of fines as it acts mainly by erosion, the resulting powder being more prone to agglomerate due to the abundance of fines. The mill set-up working by impact as dominant mechanical force (rotary ball mill) produced more evenly distributed particle sizes and shapes. The resulting powder is less prone to agglomerate due to a preferential fragmentation mechanism. Conclusions: The attrition-dominant mill yields powders with dispersed particle sizes and shapes and the poorest flow properties, while the impact-dominant mill yields more agglomeration-prone powders. The mill set-up working with impact and attrition as concomitant mechanical forces (stirred ball mill) produces powders with better reactivity and flow properties compared to rotary and vibratory mills.


Author(s):  
A. Ph. Ilyushchanka ◽  
T. L. Talako ◽  
A. V. Leshok ◽  
A. I. Letsko ◽  
T. I. Pinchuk

The article presents the results of study of the effect of additives of an ultrafine powder of the Ti–46Al–8Cr system obtained by MASHS on the tribotechnical properties of a friction material based on BrO6 bronze. It is shown that in the range of powder additive concentrations 0.5–1.5 wt. %, the dynamic coefficient of friction increases from 0.04 to 0.055, in the range of 1.5–2.5 % – to 0.055–0.058. The introduction of the 0.5–1.0 % Ti–46Al–8Cr powder permitted to reduce the wear rate of the friction material from 4.0 to 3.7 μm/km. An increase in the additive to 2.5 % led to an increase in the material wear rate up to 6 μm/km.


2021 ◽  
Vol 379 ◽  
pp. 478-484
Author(s):  
Linli Gan ◽  
Zhiheng Xiao ◽  
Aming Wang ◽  
Heng Pan ◽  
Jinbang Hu ◽  
...  

2020 ◽  
Vol 73 (1) ◽  
pp. 87-94
Author(s):  
Satoshi FUJIWARA ◽  
Taro KOSUGE ◽  
Masanori MARUOKA ◽  
Hiromi FUJIWARA

Sign in / Sign up

Export Citation Format

Share Document