scholarly journals Signal processing techniques for precise timing with novel gaseous detectors

2021 ◽  
Vol 2105 (1) ◽  
pp. 012015
Author(s):  
I Manthos ◽  
K Kordas ◽  
I Maniatis ◽  
M Tsopoulou ◽  
S E Tzamarias

Abstract The experimental requirements in current and near-future accelerators and experiments have stimulated intense interest in R&D of detectors with high precision timing capabilities, resulting in novel instrumentation. During the R&D phase, the timing information is usually extracted from the signal using the full waveform collected with fast oscilloscopes; this method produces a large amount of data and it becomes impractical when the detector has many channels. Towards practical applications, the data acquisition should be undertaken by dedicated front-end electronic units. The selected technology should retain the signal timing characteristics and consequently the timing resolution on the particle’s arrival time. We investigate the adequacy of the Leading-edge discrimination timing technique to achieve timing with a precision in the order of tens of picosecond with novel gaseous detectors. The method under investigation introduces a “time-walk” which impinges on the timing resolution. We mitigate the effect of time-walk using three different approaches; the first based on multiple Time-over-Threshold, the second based on multiple Charge-over-Threshold information and the third uses artificial Neural Network techniques. The results of this study prove the feasibility of the methods and their ability to achieve a timing resolution comparable to that obtained using the full waveforms.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rongming Lin ◽  
Teng Yong Ng ◽  
Zheng Fan

Abstract Some nonlinear systems possess innate capabilities of enhancing weak signal transmissions through a unique process called Stochastic Resonance (SR). However, existing SR mechanism suffers limited signal enhancement from inappropriate entraining signals. Here we propose a new and effective implementation, resulting in a new type of spectral resonance similar to SR but capable of achieving orders of magnitude higher signal enhancement than previously reported. By employing entraining frequency in the range of the weak signal, strong spectral resonances can be induced to facilitate nonlinear modulations and intermodulations, thereby strengthening the weak signal. The underlying physical mechanism governing the behavior of spectral resonances is examined, revealing the inherent advantages of the proposed spectral resonances over the existing implementation of SR. Wide range of parameters have been found for the optimal enhancement of any given weak signal and an analytical method is established to estimate these required parameters. A reliable algorithm is also developed for the identifications of weak signals using signal processing techniques. The present work can significantly improve existing SR performances and can have profound practical applications where SR is currently employed for its inherent technological advantages.


2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Hyeonu Heo ◽  
Yuqi Jin ◽  
David Yang ◽  
Christopher Wier ◽  
Aaron Minard ◽  
...  

The advent of 3D digital printers has led to the evolution of realistic anatomical organ shaped structures that are being currently used as experimental models for rehearsing and preparing complex surgical procedures by clinicians. However, the actual material properties are still far from being ideal, which necessitates the need to develop new materials and processing techniques for the next generation of 3D printers optimized for clinical applications. Recently, the voxelated soft matter technique has been introduced to provide a much broader range of materials and a profile much more like the actual organ that can be designed and fabricated voxel by voxel with high precision. For the practical applications of 3D voxelated materials, it is crucial to develop the novel high precision material manufacturing and characterization technique to control the mechanical properties that can be difficult using the conventional methods due to the complexity and the size of the combination of materials. Here we propose the non-destructive ultrasound effective density and bulk modulus imaging to evaluate 3D voxelated materials printed by J750 Digital Anatomy 3D Printer of Stratasys. Our method provides the design map of voxelated materials and substantially broadens the applications of 3D digital printing in the clinical research area.


Sign in / Sign up

Export Citation Format

Share Document