scholarly journals Markov Decision Process approach in the estimation of raw material quality in incoming inspection process

2021 ◽  
Vol 2107 (1) ◽  
pp. 012025
Author(s):  
Annapoorni Mani ◽  
Shahriman Abu Bakar ◽  
Pranesh Krishnan ◽  
Sazali Yaacob

Abstract The incoming inspection process in any manufacturing plant aims to control quality, reduce manufacturing costs, eliminate scrap, and process failure downtime due to defective raw materials. Prediction of the raw material acceptance rate can regulate the raw material supplier selection and improve the manufacturing process by filtering out non-conformities. This paper presents a raw material acceptance prediction model (RMAP) developed based on the Markov analysis. RFID tags are used to track the parts throughout the process. A secondary dataset can be derived from the raw RFID data. In this study, a dataset is simulated to reflect a typical incoming inspection process consisting of six substations (Packaging Inspection, Visual Inspection, Gauge Inspection, Rework1, and Rework2) are considered. The accepted parts are forwarded to the Pack and Store station and stored in the warehouse. The non-conforming parts are returned to the supplier. The proposed RMAP model estimates the probability of the raw material being accepted or rejected at each inspection station. The proposed model is evaluated using three test cases: case A (lower conformities), case B (higher conformities) and case C (equal chances of being accepted and rejected). Based on the outcome of the limiting matrix for the three test cases, the results are discussed. The steady-state matrix forecasts the probability of the raw material in a random state. This prediction and forecasting ability of the proposed model enables the industries to save time and cost.

2021 ◽  
Vol 2107 (1) ◽  
pp. 012026
Author(s):  
Annapoorni Mani ◽  
Shahriman Abu Bakar ◽  
Pranesh Krishnan ◽  
Sazali Yaacob

Abstract Reinforcement learning is one of the promising approaches for operations research problems. The incoming inspection process in any manufacturing plant aims to control quality, reduce manufacturing costs, eliminate scrap, and process failure downtimes due to non-conforming raw materials. Prediction of the raw material acceptance rate can regulate the raw material supplier selection and improve the manufacturing process by filtering out non-conformities. This paper presents a Markov model developed to estimate the probability of the raw material being accepted or rejected in an incoming inspection environment. The proposed forecasting model is further optimized for efficiency using the two reinforcement learning algorithms (dynamic programming and temporal differencing). The results of the two optimized models are compared, and the findings are discussed.


Author(s):  
T.S. Morozova

A study into the failure causes of mixing and charging equipment confirms that the main impact on the probability of accidents is the use of raw materials that do not meet the specifications and have unstable properties. The raw materials used for explosives preparation in mechanized charging of boreholes include such components as ammonium nitrate, emulsion phase, diesel fuel, emulsifier and others. The paper describes the application of various formulations with these components in specific types of mixing and charging machines manufactured by AZOTTECH LLC. The main properties that affect the quality of raw materials are summarised, and the incoming inspection of explosive components is described as part of the acceptance procedure at temporary storage sites at a hazardous production facility. The paper describes common types of equipment failures and maintenance procedures when using substandard raw materials. The conclusion highlights the key practices to improve the equipment uptime as well as recommendations for incoming inspection and the use of high-quality explosive components.


Author(s):  
Alexander Sklyar

The subject of this research is the processes of price formation for raw materials depending on the demand for end consumer products. The article reviews a mathematical model that is based on the principle of maximum utility. The proposed model is founded on the stage-by-stage determination of the production output and consumption of end products, as well as corresponding prices depending on the prices of used raw materials and semi-finished products. The prices for intermediate products and raw materials are formed depending on the need for end products output with their optimization by demand. The article provides the basic mathematical ration with regards to using principle of maximum utility applicable to the demand-supply model and its implementation in multi-stage production. The acquired results indicate weak dependence of production output and prices for end products on the cost of raw material in terms of advanced refining. With limited production capacity of raw materials, the dynamics of prices is well predicted. The results of modeling, compared to the available statistical data, indicate the adequacy of the proposed model to the unfolding economic processes. It is determined that the accuracy of price prediction for raw products with a significant volume of its subsequent processing is limited.


Author(s):  
Kosuke Kawakami ◽  
Hirokazu Kobayashi ◽  
Kazuhide Nakata

We developed a seasonal inventory management model for raw materials, such as iron ore and coal, for multiple suppliers and multiple mills. The Nippon Steel Corporation imports more than 100 million tons of raw material annually by vessels from Australia, Brazil, Canada, and other countries. Once these raw materials arrive in Japan, they are transported to domestic mills and stored in yards before being treated in a blast furnace. A critical problem currently facing the industry is the limited capacity of the yards, which leads to high demurrage costs while ships wait for space to open up in the yards before they can unload. To reduce the demurrage costs, the inventory levels of the raw materials must be kept as low as possible. However, inventory levels that are too low may lead to inventory shortage resulting from seasonal supply disruptions (e.g., a cyclone in Australia) that delay the supply of raw materials. Because both excess and depleted inventory levels lead to increased costs, optimal inventory levels must be determined. To solve this problem, we developed an inventory management model that considers variations on the supply side, differences that should be observable upon looking at the ship operations. The concept is to model the probability distribution of ship arrival intervals by brand groups and mills. We divided ship operations into two stages: arrival at all mills (in Japan) and arrival at individual mills. We modeled the former as a nonhomogeneous Poisson process and the latter as a nonhomogeneous Gamma process. Our proposed model enables inventory levels to be reduced by 14% in summer and 6% in winter.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012027
Author(s):  
Annapoorni Mani ◽  
Shahriman Abu Bakar ◽  
Pranesh Krishnan ◽  
Sazali Yaacob

Abstract Reinforcement learning is the most preferred algorithms for optimization problems in industrial automation. Model-free reinforcement learning algorithms optimize for rewards without the knowledge of the environmental dynamics and require less computation. Regulating the quality of the raw materials in the inbound inventory can improve the manufacturing process. In this paper, the raw materials arriving at the incoming inspection process are categorized and labeled based on their quality through the path traveled. A model-free temporal difference learning approach is used to predict the acceptance and rejection path of raw materials in the incoming inspection process. The algorithm presented eight routes paths that the raw materials could travel. Four pathways correspond to material acceptance, while the rest lead to material refusal. The materials are annotated using the total scores acquired in the incoming inspection process. The materials traveling on the ideal path (path A) get the highest total score. The rest of the accepted materials in the acceptance path have a 7.37% lower score in path B, whereas path C and path D get 37.28% and 42.44% lower than the ideal approach.


2015 ◽  
Vol 760 ◽  
pp. 659-664
Author(s):  
Dragoș Iliescu ◽  
Ion Diaconu ◽  
Ion Mateias ◽  
Marian Gheorghe

A process improvement of incoming inspection for the materials used by a steelmaking enterprise is explained in this paper. The applied methods were described with examples considering the need of the improved process. The process complexity is explained in turn by the existence of the involved actors that need to exchange information about the inspected materials. The results obtained by the improved process justify the action started in 2012 for the incoming inspection process by a more constant quality level of the materials, reduction of the overall process duration, better materials information exchange and a convenient method for supplier surveillance and evaluation.


2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Firman L. Sahwan

Organic materials that are generally used as raw material for organic fertilizer granules (POG) is a natural organic material that has been degrade, smooth and dry. One of the main raw materials are always used with a very high percentage of usage, is manure. Manure potential in Indonesia is very high, amounting to 113.6 million tons per year, or 64.7 million tons per year to the island of Java. From this amount, it will be generated numbers POG production potential of 17.5 million tons per year (total Indonesia) or 9.9 million tons per year for the island of Java. While the realistic POG production predictions figures made from raw manure is 2.5 million tons annually, a figure that has been unable to meet the number requirement of POG greater than 4 million tons per year. Therefore, in producing POG, it should be to maximize the using of the potential of other organic materials so that the use of manure can be saved. With the use of a small amount of manure (maximum 30% for cow manure), it would be useful also to avoid the production of POG with high Fe content.keywods: organic material, manure, granule organic fertilizer


Food Industry ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 61-70
Author(s):  
Oliya Fazullina ◽  
Stanislav Smirnov

Health indicators of the population depend significantly on the food quality and nutritional value. Simple carbohydrates excess of and lack of protein, dietary fiber, vitamins, minerals, antioxidants and other physiologically active substances increase the risk of socially significant disease progress. The development and production of mass-consumed products with high nutritional and biological value, including affordable non-traditional raw materials use, are promising areas of the food industry development aimed at improving the nutritional status of the population. The article presents the research results on the developed Noodle products recipes from non-traditional raw materials that meet modern healthy nutrition requirements, intended for dietary treatment and dietary prevention of people with overweight / obesity. The research aimed at expanding the range of macaroni products with these characteristics. As the main raw material, a man selected whole-wheat flour – new spelt flour, and as additional raw materials – buckwheat flour, broccoli and celery powders. The researchers found that the introduction of macaroni products from buckwheat spelt, broccoli and celery powders into the recipe had a multidirectional effect, reducing or increasing various indicators of its nutritional value. The changes range did not affect the overall characteristics. The satisfaction degree of the average daily need for food substances and energy when consuming a portion of 100 g for each sample of developed Noodle products allows them to be classified as functional products that are protein and dietary fiber sources, according to the requirements of the TR CU 022/2011.


1982 ◽  
Vol 21 (4) ◽  
pp. 329-333
Author(s):  
Rashid Aziz

The book under review is a concise but fairly in-depth study of the prospects for export diversification from the Less Developed Countries (henceforth labeled as LDCs) particularly to Developed Countries (henceforth labeled as OCs). Given the multiple problems faced by the LOCs in exporting to the OCs - protectionist policies with regards to manufactured exports, volatility of prices obtained for raw material exports, etc. - the study analyses the potential for following an intermediate route. The important issues in the export of semi -processed and wholly processed raw materials are discussed. 111ese issues range from the problems and potentials for the location of processing facilities in the LOCs to the formulation of appropriate policies to encourage an export of processed goods rather than raw materials. Such policies will be useful both in solving the balance of-payments problems of the LDCs and in attaining the goal of the Lima Declaration and Plan of Action on Industrial Development and Co-operation, that called for 2S percent of world industrial production to be located in the LOCs by the year 2000.


Sign in / Sign up

Export Citation Format

Share Document