scholarly journals Cost of Energy Losses for Distributed Generation Using Hybrid Evolutionary Programming-Firefly Algorithm

2021 ◽  
Vol 2107 (1) ◽  
pp. 012049
Author(s):  
Noor Najwa Husnaini Mohammad Husni ◽  
Siti Rafidah Abdul Rahim ◽  
Mohd Rafi Adzman ◽  
Muhammad Hatta Hussain ◽  
Ismail Musirin

Abstract The cost of energy losses analysis for distributed generation (DG) is presented in this paper using a Hybrid Evolutionary Programming-Firefly Algorithm (EPFA). The proposed method was created to determine the optimal DG sizing in the distribution system while accounting for the system’s energy losses. This study presents an investigation into hybrid optimization techniques for DG capabilities and optimal operating strategies in distribution systems. The objectives of this study were to reduce the cost of energy losses while increasing the voltage profile and minimize distribution system losses. In this study, the analysis was done by consider DG type I which is DG-PV. The suggested methodology was tested using the IEEE 69-bus test system, and the simulation was written in the MATLAB programming language. Power system planners can use appropriate location and sizing from the results obtained for utility planning in terms of economic considerations. From the simulation, the result shows the proposed method can identify the suitable sizing of DG while reduce cost of energy losses and total losses in the system.

2015 ◽  
Vol 793 ◽  
pp. 478-482
Author(s):  
S.R.A. Rahim ◽  
Ismail Musirin ◽  
Muhammad Murtadha Othman ◽  
Muhamad Hatta Hussain

This paper presents the analysis on load models for cost optimization for distributed generation planning. The Embedded Meta EP – Firefly Algorithm technique is performed in order to identify the optimal distributed generation sizing. The result obtained show that the proposed technique has an acceptable performance to simulate the data and voltage dependent load models have a significant effect on total losses of a distribution system consequently will affect the cost of the system.


2017 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Souhaib Remha

In this paper, a novel optimization algorithm is presented for optimal location and sizing of Distributed Generation (DG) units on distribution systems. For this purpose, a recently based meta-heuristic called Firefly Algorithm (FA) has been employed to minimize the total active power losses. The results show a considerable improved in voltage profiles of all the buses and enhance the voltage stability index. The investigations were tested on IEEE 33 bus radial distribution system. Simulation results demonstrate the effectiveness of firefly algorithm. Comparison with another method is also given.


2017 ◽  
Vol 79 (4) ◽  
Author(s):  
Umbrin Sultana ◽  
Azhar Khairuddin ◽  
A. S. Mokhtar ◽  
Sajid Hussain Qazi ◽  
Beenish Sultana

The interest of electric utilities in distributed energy resources has increased in terms of maximising the latter’s technical, economic and  environmental benefits. This paper presents a Grey Wolf Optimizer (GWO) -based approach for optimal placement and sizing of multiple Distributed Generation (DG), aimed at reducing active and reactive energy losses in the distribution system. Power system constraints, such as voltage magnitude limits and current boundaries are also considered. Recently, a swarm intelligence technique, namely, GWO was introduced, which is inspired by grey wolves strategy and utilises four categories of grey wolves (alpha, beta, delta and omega) to simulate a leadership hierarchy. The GWO technique and two other popular methods Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) – are here tested on 15- and 33-bus radial distribution systems. The numerical results obtained using these methods are compared, with the best performance recorded via the proposed GWO method in terms of not only active and reactive energy loss but also voltage profile and convergence characteristics.


2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


2013 ◽  
Vol 64 (2) ◽  
pp. 76-83
Author(s):  
Hamed Hashemi-Dezaki ◽  
Ali Agheli ◽  
Behrooz Vahidi ◽  
Hossein Askarian-Abyaneh

The use of distributed generations (DGs) in distribution systems has been common in recent years. Some DGs work stand alone and it is possible to improve the system reliability by connecting these DGs to system. The joint point of DGs is an important parameter in the system designing. In this paper, a novel methodology is proposed to find the optimum solution in order to make a proper decision about DGs connection. In the proposed method, a novel objective function is introduced which includes the cost of connector lines between DGs and network and the cost of energy not supplied (CENS) savings. Furthermore, an analytical approach is used to calculate the CENS decrement. To solve the introduced nonlinear optimization programming, the genetic algorithm (GA) is used. The proposed method is applied to a realistic 183-bus system of Tehran Regional Electrical Company (TREC). The results illustrate the effectiveness of the method to improve the system reliability by connecting the DGs work stand alone in proper placements.


Author(s):  
S. R. A. Rahim ◽  
I. Musirin ◽  
M. M. Othman ◽  
M. H. Hussain

<p>This paper presents the implementation of multiple distributed generation planning in distribution system using computational intelligence technique. A pre-developed computational intelligence optimization technique named as Embedded Meta EP-Firefly Algorithm (EMEFA) was utilized to determine distribution loss and penetration level for the purpose of distributed generation (DG) installation. In this study, the Artificial Neural Network (ANN) was used in order to solve the complexity of the multiple DG concept. EMEFA-ANN was developed to optimize the weight of the ANN to minimize the mean squared error. The proposed method was validated on IEEE 69 Bus distribution system with several load variations scenario. The case study was conducted based on the multiple unit of DG in distribution system by considering the DGs are modeled as type I which is capable of injecting real power. Results obtained from the study could be utilized by the utility and energy commission for loss reduction scheme in distribution system.</p>


2015 ◽  
Vol 16 (5) ◽  
pp. 399-411 ◽  
Author(s):  
Abdelrahman Ahmed Akila ◽  
Ahmed Helal ◽  
Hussein Eldesouki

Abstract Distribution systems are traditionally designed as radial passive systems fed from a single source. Protection coordination of such systems has been easily established assuming the system radiality. Insertion of distributed generators (DGs) into distribution systems makes the distribution system to be more active which causes redistribution of fault currents magnitudes and directions. This causes negative impacts on the original protection system coordination, since the distribution system losses its radiality and passiveness. Recently protection coordination in the presence of distributed generation has been paid a great attention. Researchers proposed various solutions to solve the protection coordination problem caused by adding DG into the distribution network. In this paper, the proposed solutions for the protection coordination problem considering the DG insertion will be illustrated, classified, and criticized.


2015 ◽  
Vol 9 (6) ◽  
pp. 513-522 ◽  
Author(s):  
Hamed Nafisi ◽  
Vahid Farahani ◽  
Mehrdad Abedi ◽  
Hossein Askarian Abyaneh

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5242
Author(s):  
Ouafa Laribi ◽  
Krzysztof Rudion

The increasing integration of renewable energies into the grid is calling for the expansion of the power transport capacities in the distribution system. Yet, the expansion of the grid could require long authorization procedures and cannot be always asserted. Therefore, a higher utilization of the existing grid is becoming increasingly necessary today. This paper proposes a new time series-based planning method for distribution systems using classical grid expansion instruments as well as innovative planning instruments such as battery storage systems (BSS) and dynamic power curtailment (DPC). These planning instruments could be applied individually or combined. The aim of the BSS and DPC application is to enable a higher utilization of the grid at minimal costs. The proposed method, which has been implemented as an automated planning algorithm, determines the cost-optimal grid reinforcement measures that ensure the prevention of prognosticated congestions in the considered grid. Furthermore, the application of the proposed planning method on the considered power system has proven that a combination of BSS and grid expansion could be more economical than an individual application of BSS and grid expansion.


Sign in / Sign up

Export Citation Format

Share Document