scholarly journals Stability analysis of microgrid inverter off-grid mode considering nonlinear load

2021 ◽  
Vol 2108 (1) ◽  
pp. 012090
Author(s):  
Xiaoyan Shi ◽  
Bin Wang ◽  
Shuijuan Yu

Abstract With the large-scale utilization of distributed generation in microgrid, inverter as the connection hub of new energy grid connection, directly affects the operation performance of microgrid. In order to improve the output voltage quality and load capacity of the inverter in the off-grid mode of distributed energy, the stability region of the inverter with load is analyzed by using the impedance analysis method of cascade converter and control theory. The quasi proportional resonant (QPR) double loop control is adopted to realize no static error tracking voltage while increasing bandwidth, and the influence of control parameters on performance is analyzed. At the same time, in order to improve the capacity of inverter with nonlinear load, odd harmonics are introduced into the controller to suppress the influence of low harmonics of load current on output voltage. Finally, the influence of inverter output impedance change, load level, controller parameters and filter parameters on system stability is analyzed through impedance ratio Nyquist curve, which provides corresponding theoretical support and parameter optimization reference for the design of actual system.

2018 ◽  
Vol 8 (2) ◽  
pp. 2758-2763 ◽  
Author(s):  
D. V. Ngo ◽  
K. V. Pham ◽  
D. D. Le ◽  
K. H. Le ◽  
K. V. Huynh

An increase in load capacity during the operation of a power system usually causes voltage drop and leads to system instability, so it is necessary to monitor the effect of load changes. This article presents a method of assessing the power system stability according to the load node capacity considering uncertainty factors in the system. The proposed approach can be applied to large-scale power systems for voltage stability assessment in real-time.


Author(s):  
Yan Pan ◽  
Shining Li ◽  
Qianwu Chen ◽  
Nan Zhang ◽  
Tao Cheng ◽  
...  

Stimulated by the dramatical service demand in the logistics industry, logistics trucks employed in last-mile parcel delivery bring critical public concerns, such as heavy cost burden, traffic congestion and air pollution. Unmanned Aerial Vehicles (UAVs) are a promising alternative tool in last-mile delivery, which is however limited by insufficient flight range and load capacity. This paper presents an innovative energy-limited logistics UAV schedule approach using crowdsourced buses. Specifically, when one UAV delivers a parcel, it first lands on a crowdsourced social bus to parcel destination, gets recharged by the wireless recharger deployed on the bus, and then flies from the bus to the parcel destination. This novel approach not only increases the delivery range and load capacity of battery-limited UAVs, but is also much more cost-effective and environment-friendly than traditional methods. New challenges therefore emerge as the buses with spatiotemporal mobility become the bottleneck during delivery. By landing on buses, an Energy-Neutral Flight Principle and a delivery scheduling algorithm are proposed for the UAVs. Using the Energy-Neutral Flight Principle, each UAV can plan a flying path without depleting energy given buses with uncertain velocities. Besides, the delivery scheduling algorithm optimizes the delivery time and number of delivered parcels given warehouse location, logistics UAVs, parcel locations and buses. Comprehensive evaluations using a large-scale bus dataset demonstrate the superiority of the innovative logistics UAV schedule approach.


2021 ◽  
Author(s):  
Edwin Lughofer ◽  
Mahardhika Pratama

AbstractEvolving fuzzy systems (EFS) have enjoyed a wide attraction in the community to handle learning from data streams in an incremental, single-pass and transparent manner. The main concentration so far lied in the development of approaches for single EFS models, basically used for prediction purposes. Forgetting mechanisms have been used to increase their flexibility, especially for the purpose to adapt quickly to changing situations such as drifting data distributions. These require forgetting factors steering the degree of timely out-weighing older learned concepts, whose adequate setting in advance or in adaptive fashion is not an easy and not a fully resolved task. In this paper, we propose a new concept of learning fuzzy systems from data streams, which we call online sequential ensembling of fuzzy systems (OS-FS). It is able to model the recent dependencies in streams on a chunk-wise basis: for each new incoming chunk, a new fuzzy model is trained from scratch and added to the ensemble (of fuzzy systems trained before). This induces (i) maximal flexibility in terms of being able to apply variable chunk sizes according to the actual system delay in receiving target values and (ii) fast reaction possibilities in the case of arising drifts. The latter are realized with specific prediction techniques on new data chunks based on the sequential ensemble members trained so far over time. We propose four different prediction variants including various weighting concepts in order to put higher weights on the members with higher inference certainty during the amalgamation of predictions of single members to a final prediction. In this sense, older members, which keep in mind knowledge about past states, may get dynamically reactivated in the case of cyclic drifts, which induce dynamic changes in the process behavior which are re-occurring from time to time later. Furthermore, we integrate a concept for properly resolving possible contradictions among members with similar inference certainties. The reaction onto drifts is thus autonomously handled on demand and on the fly during the prediction stage (and not during model adaptation/evolution stage as conventionally done in single EFS models), which yields enormous flexibility. Finally, in order to cope with large-scale and (theoretically) infinite data streams within a reasonable amount of prediction time, we demonstrate two concepts for pruning past ensemble members, one based on atypical high error trends of single members and one based on the non-diversity of ensemble members. The results based on two data streams showed significantly improved performance compared to single EFS models in terms of a better convergence of the accumulated chunk-wise ahead prediction error trends, especially in the case of regular and cyclic drifts. Moreover, the more advanced prediction schemes could significantly outperform standard averaging over all members’ outputs. Furthermore, resolving contradictory outputs among members helped to improve the performance of the sequential ensemble further. Results on a wider range of data streams from different application scenarios showed (i) improved error trend lines over single EFS models, as well as over related AI methods OS-ELM and MLPs neural networks retrained on data chunks, and (ii) slightly worse trend lines than on-line bagged EFS (as specific EFS ensembles), but with around 100 times faster processing times (achieving low processing times way below requiring milli-seconds for single samples updates).


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Guo-Jie Li ◽  
Tek Lie

AbstractInter-area oscillations are serious problems to large-scale power systems. A decentralized H ∞ generator excitation controller of a power system is proposed to damp the inter-area oscillations and to enhance power system stability. The design procedure for a linear composite system is presented in terms of positive semi-definite solutions to modified algebraic inequalities. The resulting controller guarantees closed-loop stability, robustness and an H ∞-norm bound on disturbance attenuation even under uncertainties such as high frequency noise. The control is decentralized in the sense that the control of each generator depends on local information only. The effectiveness of the H ∞ controller is demonstrated through digital simulation studies on a two-machine power system.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim ◽  
Myongsok Song

Abstract This work presents a novel design of a hydrostatic thrust foil bearing (HSTFB) with an outer diameter of 154mm along with simulation and test results up to specific load capacity of 223kPa (32.3psi). The HSTFB incorporates a high pressure air/gas injection to the thrust foil bearing with a uniform clearance. This bearing has high load capacity, low power loss, and no friction/wear during startup and shutdown. In addition, the HSTFB allows for bidirectional operation. The paper also presents an advanced simulation model which adopts the exact locations of a tangentially arranged bumps to a cylindrical two-dimensional plate model of the top foil. This method predicts top foil deflection with better accuracy than the traditional independent elastic foundation model which distributes the bump locations over the nodal points in the cylindrical coordinates, and with less computational resource than the finite element method applied to the entire bump/top foils. The presented HSTFB, was designed for Organic Rankine Cycle (ORC) generators, but its performance was predicted and measured using air in this paper. The bearing static performance is compared analytically against the rigid counterpart, and presented at different supply pressures, speeds, and minimum film thicknesses. Experimental verification is conducted at 10, 15 and 20krpm. The measured load capacity and frictional loss agree well with the prediction. The measured film thickness also agrees with the prediction after the structural deflection of the thrust runner disc is compensated. Overall, the novel HSTFB demonstrates an excellent static performance and shows good potential for adoption to the intended ORC generators and other large oil-free turbomachines.


2017 ◽  
Vol 251 ◽  
pp. 99-105 ◽  
Author(s):  
Lei Wang ◽  
Yingbin Fu ◽  
Michael Z. Q. Chen ◽  
Xuhua Yang

2013 ◽  
Vol 391 ◽  
pp. 261-264
Author(s):  
Xiao Ning Xu ◽  
Xue Song Zhou

The classification and application range of energy storage technology are briefly introduced. Challenges for large-scale wind power integration are summarized. With regard to the problems in system stability, low voltage ride-through ability of wind the turbine generator, and power quality, the paper elaborated some solutions based on energy storage technology, and analyzed their advantages and disadvantages. With the character of energy storage technology combined, the paper put forward some advice of energy storage technology applying in wind power integration.


2018 ◽  
Vol 3 (3) ◽  
pp. 53-59 ◽  
Author(s):  
José Ferreira

The DC/DC boost converter is described as a time variant system. State-Space is one of the methods used to approach a time variant system to an invariant time linear system. The present document focuses on a comparative approach of output voltage regulation and system stability and performance. For this document, there were made MatLab tests of PI and PD controllers, with and without fuzzy control.


Sign in / Sign up

Export Citation Format

Share Document