scholarly journals Internet of Things-based Hydroponic: Literature Review

2021 ◽  
Vol 2111 (1) ◽  
pp. 012014
Author(s):  
Alan Hadinata ◽  
Mashoedah

Abstract Hydroponics is a method of growing crops without using soil, with the benefits of controlling the environment and nutrients, conserving water, and reducing labor. The applied technology is used to improve results that have consistency. This research was conducted with the aim of knowing the IoT devices and platforms used in the development of IoT-based hydroponics. Data obtained from the website garuda.ristekbrin.go.id and www.sciencedirect.com from 2016 to 2021. This study is a literature review using the PRISMA method. This method is used for literature review using a systematic and structured basic framework. The results of this study indicate that the variables measured are Temperature, Potential Hydrogen (pH), Total Dissolve Solid, Water Temperature, Humidity, UV, Carbon Dioxide, Soil Moisture and Electrical Conductivity. The device used is the ESP8266, Arduino, and Raspberry PI with the MySQL, Thingspeak, Firebase, Domoticz, and Wyliodrin IoT Platforms.

2021 ◽  
Vol 64 (1) ◽  
pp. 287-298
Author(s):  
Ruixiu Sui ◽  
Jonnie Baggard

HighlightsWe developed and evaluated a variable-rate irrigation (VRI) management method for five crop years in the Mississippi Delta.VRI management significantly reduced irrigation water use in comparison with uniform-rate irrigation (URI). There was no significant difference in grain yield and irrigation water productivity between VRI and URI management.Soil apparent electrical conductivity (ECa) was used to delineate irrigation management zones and generate VRI prescriptions.Sensor-measured soil water content was used in irrigation scheduling.Abstract. Variable-rate irrigation (VRI) allows producers to site-specifically apply irrigation water at variable rates within a field to account for the temporal and spatial variability in soil and plant characteristics. Developing practical VRI methods and documenting the benefits of VRI application are critical to accelerate the adoption of VRI technologies. Using apparent soil electrical conductivity (ECa) and soil moisture sensors, a VRI method was developed and evaluated with corn and soybean for five crop years in the Mississippi Delta. Soil ECa of the study fields was mapped and used to delineate VRI management zones and create VRI prescriptions. Irrigation was scheduled using soil volumetric water content measured by soil moisture sensors. A center pivot VRI system was employed to deliver irrigation water according to the VRI prescription. Grain yield, irrigation water use, and irrigation water productivity in the VRI treatment were determined and compared with that in a uniform-rate irrigation (URI) treatment. Results showed that the grain yield and irrigation water productivity between the VRI and URI treatments were not statistically different with both corn and soybean crops. The VRI management significantly reduced the amount of irrigation water by 22% in corn and by 11% in soybean (p = 0.05). Adoption of VRI management could improve irrigation water use efficiency in the Mississippi Delta. Keywords: Soil electrical conductivity, Soil moisture sensor, Variable rate irrigation, Water management.


2017 ◽  
Vol 31 (3) ◽  
pp. 339-349 ◽  
Author(s):  
Wu Haohao ◽  
Xu Xingkai ◽  
Duan Cuntao ◽  
Li TuanSheng ◽  
Cheng Weiguo

AbstractPacked soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m−2) and nitrogen (NH4Cl and KNO3, 4.5 g N m−2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3−-N consumption. Without N addition, the glucose-induced cumulative CO2fluxes ranged from 9.61 to 13.49 g CO2-C m−2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.


2009 ◽  
Vol 6 (12) ◽  
pp. 2879-2893 ◽  
Author(s):  
Y. Fu ◽  
Z. Zheng ◽  
G. Yu ◽  
Z. Hu ◽  
X. Sun ◽  
...  

Abstract. This study compared carbon dioxide (CO2) fluxes over three grassland ecosystems in China, including a temperate semiarid steppe in Inner Mongolia (NMG), an alpine shrub-meadow in Qinghai (HB), and an alpine meadow-steppe in Tibet (DX). Measurements were made in 2004 and 2005 using the eddy covariance technique. Objectives were to document the seasonality of the net ecosystem exchange of CO2 (NEE) and its components, gross ecosystem photosynthesis (GEP), and ecosystem respiration (Reco), and to examine how environmental factors affect the CO2 exchange in these grassland ecosystems. The 2005 growing season (from May to September) was warmer than that of 2004 across the three sites, and precipitation in 2005 was less than that in 2004 at NMG and DX. The magnitude of CO2 fluxes (daily and annual sums) was largest at HB, which also showed the highest temperature sensitivity of Reco among the three sites. A stepwise multiple regression analysis showed that the seasonal variation of GEP, Reco, and NEE of the alpine shrub-meadow was mainly controlled by air temperature, whereas leaf area index can likely explain the seasonal variation in GEP, Reco, and NEE of the temperate steppe. The CO2 fluxes of the alpine meadow-steppe were jointly affected by soil moisture and air temperature. The alpine shrub-meadow acted as a net carbon sink over the two study years, whereas the temperate steppe and alpine meadow-steppe acted as net carbon sources. Both GEP and Reco were reduced by the summer and spring drought in 2005 at NMG and DX, respectively. The accumulated leaf area index during the growing season (LAIsum) played a key role in the interannual and intersite variation of annual GEP and Reco across the study sites and years, whereas soil moisture contributed most significantly to the variation in annual NEE. Because LAIsum was significantly correlated with soil moisture at a depth of 20 cm, we concluded that the available soil moisture other than annual precipitation was the most important factor controlling the variation in the CO2 budgets of different grassland ecosystems in China.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 374 ◽  
Author(s):  
Patrick Nyambo ◽  
Chiduza Cornelius ◽  
Tesfay Araya

Understanding the impacts of agricultural practices on carbon stocks and CO2 emission is imperative in order to recommend low emission strategies. The objective of this study was to investigate the effects of tillage, crop rotation, and residue management on soil CO2 fluxes, carbon stock, soil temperature, and moisture in the semi-arid conditions in the Eastern Cape of South Africa. The field trial was laid out as a split-split-plot design replicated three times. The main plots were tillage viz conventional tillage (CT) and no-till (NT). The sub-plots were allocated to crop rotations viz maize–fallow–maize (MFM), maize–oat–maize (MOM), and maize–vetch–maize (MVM). Crop residue management was in the sub-sub plots, viz retention (R+), removal (R−), and biochar (B). There were no significant interactions (p > 0.05) with respect to the cumulative CO2 fluxes, soil moisture, and soil temperature. Crop residue retention significantly increased the soil moisture content relative to residue removal, but was not different to biochar application. Soil tilling increased the CO2 fluxes by approximately 26.3% relative to the NT. The carbon dioxide fluxes were significantly lower in R− (2.04 µmoL m−2 s−1) relative to the R+ (2.32 µmoL m−2 s−1) and B treatments (2.36 µmoL m−2 s−1). The carbon dioxide fluxes were higher in the summer (October–February) months compared to the winter period (May–July), irrespective of treatment factors. No tillage had a significantly higher carbon stock at the 0-5 cm depth relative to CT. Amending the soils with biochar resulted in significantly lower total carbon stock relative to both R+ and R−. The results of the study show that NT can potentially reduce CO2 fluxes. In the short term, amending soils with biochar did not reduce the CO2 fluxes compared to R+, however the soil moisture increases were comparable.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 733-751
Author(s):  
D.M. Sheeba

Internet of Things enables many industries to connect to end customers and provide seamless products and services delivery. Due to easy access to network, availability of devices, penetration of IoT services exponentially Growing. Meanwhile, Ensuring the Data Security and Integrity of devices connected to network is paramount. In this work, we bring the efficient way of implementing Secure Algorithm for low powered devices and enhancing the encryption and decryption process. In addition to the data security, to enhance node integrity with less power, Authenticator and intermediate network manager introduced which will acts as a firewall and manager of data flow. To demonstrate the approach, same is implemented using low cost Arduino Uno, Raspberry Pi boards. Arduino Uno used to demonstrate low powered encryption process using EDIA Algorithm and raspberry pi used as nodal manager to manage the integrity of nodes in a low-powered environment. Data Security and Integrity is ensured by the way of enhanced Algorithm and Integrity through BlockChain and results are provided and discussed. Finally result and future enhancement are explained.


Author(s):  
Paul Fremantle ◽  
Philip Scott

The rapid growth of small Internet connected devices, known as the Internet of Things (IoT), is creating a new set of challenges to create secure, private infrastructures. This paper reviews the current literature on the challenges and approaches to security and privacy in the Internet of Things, with a strong focus on how these aspects are handled in IoT middleware. We focus on IoT middleware because many systems are built from existing middleware and these inherit the underlying security properties of the middleware framework. The paper is composed of three main sections. Firstly, we propose a matrix of security and privacy threats for IoT. This matrix is used as the basis of a widespread literature review aimed at identifying requirements on IoT platforms and middleware. Secondly, we present a structured literature review of the available middleware and how security is handled in these middleware approaches. We utilise the requirements from the first phase to evaluate. Finally, we draw a set of conclusions and identify further work in this area.


Sign in / Sign up

Export Citation Format

Share Document