scholarly journals Simulation Study on Liquid Cooling of Lithium-ion Battery Pack with a Novel Pipeline Structure

2021 ◽  
Vol 2125 (1) ◽  
pp. 012062
Author(s):  
Chao Lv ◽  
Tianyuan Xia ◽  
Hongxin Yin ◽  
Minghe Sun

Abstract Lithium-ion battery is widely used as the mainstream power source of electric vehicles owing to its high specific energy and low self-discharge rate. However, the performance of the lithium-ion battery is largely hindered by its heat dissipation issue. In this paper, lithium-ion battery pack with main channel and multi-branch channel based on liquid cooling sys-tem is studied. Further, numerical simulation was used to analyze the effects of coolant temperature and flow rate on cooling performance. Based on the original pipeline structure, a new pipeline structure was proposed in the present work. The results show that increasing the cool-ant flow rate not only reduces the maximum temperature of the battery pack, but also reduces the temperature difference. Lowering the coolant temperature could largely decrease the maximum temperature of the battery pack, but it tends to widen the temperature difference and worsen the temperature uniformity. Up-on comparison, maximum temperature is found to be decreased by 0.44K, whereas, the temperature difference of the battery decreased and the temperature uniformity is improved.

Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Thermal analysis and thermal management of lithium-ion batteries for utilization in electric vehicles is vital. In order to investigate the thermal behavior of a lithium-ion battery, a liquid cooling design is demonstrated in this research. The influence of cooling direction and conduit distribution on the thermal performance of the lithium-ion battery is analyzed. The outcomes exhibit that the appropriate flow rate for heat dissipation is dependent on different configurations for cold plate. The acceptable heat dissipation condition could be acquired by adding more cooling conduits. Moreover, it was distinguished that satisfactory cooling direction could efficiently enhance the homogeneity of temperature distribution of the lithium-ion battery.


Author(s):  
Xiangping Liao ◽  
Chong Ma ◽  
Xiongbin Peng ◽  
Akhil Garg ◽  
Nengsheng Bao

Electric vehicles have become a trend in recent years, and the lithium-ion battery pack provides them with high power and energy. The battery thermal system with air cooling was always used to prevent the high temperature of the battery pack to avoid cycle life reduction and safety issues of lithium-ion batteries. This work employed an easily applied optimization method to design a more efficient battery pack with lower temperature and more uniform temperature distribution. The proposed method consisted of four steps: the air-cooling system design, computational fluid dynamics code setups, selection of surrogate models, and optimization of the battery pack. The investigated battery pack contained eight prismatic cells, and the cells were discharged under normal driving conditions. It was shown that the optimized design performs a lower maximum temperature of 2.7 K reduction and a smaller temperature standard deviation of 0.3 K reduction than the original design. This methodology can also be implemented in industries where the battery pack contains more battery cells.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3045 ◽  
Author(s):  
Xia ◽  
Liu ◽  
Huang ◽  
Yang ◽  
Lai ◽  
...  

In order to ensure thermal safety and extended cycle life of Lithium-ion batteries (LIBs) used in electric vehicles (EVs), a typical thermal management scheme was proposed as a reference design for the power battery pack. Through the development of the model for theoretical analysis and numerical simulation combined with the thermal management test bench, the designed scheme could be evaluated. In particular, the three-dimensional transient thermal model was used as the type of model. The test result verified the accuracy and the rationality of the model, but it also showed that the reference design could not reach the qualified standard of thermal performance of the power battery pack. Based on the heat dissipation strategy of liquid cooling, a novel improved design solution was proposed. The results showed that the maximum temperature of the power battery pack dropped by 1 °C, and the temperature difference was reduced by 2 °C, which improved the thermal performance of the power battery pack and consequently provides guidance for the design of the battery thermal management system (BTMS).


Sign in / Sign up

Export Citation Format

Share Document