Numerical Study of Thermal Management of Lithium-Ion Battery Pack Using Liquid Cooling

2021 ◽  
Author(s):  
Vikrant Mahesh Deshmukh ◽  
Shankar Durgam
Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Thermal analysis and thermal management of lithium-ion batteries for utilization in electric vehicles is vital. In order to investigate the thermal behavior of a lithium-ion battery, a liquid cooling design is demonstrated in this research. The influence of cooling direction and conduit distribution on the thermal performance of the lithium-ion battery is analyzed. The outcomes exhibit that the appropriate flow rate for heat dissipation is dependent on different configurations for cold plate. The acceptable heat dissipation condition could be acquired by adding more cooling conduits. Moreover, it was distinguished that satisfactory cooling direction could efficiently enhance the homogeneity of temperature distribution of the lithium-ion battery.


2021 ◽  
Vol 198 ◽  
pp. 117503 ◽  
Author(s):  
Mohsen Akbarzadeh ◽  
Theodoros Kalogiannis ◽  
Joris Jaguemont ◽  
Lu Jin ◽  
Hamidreza Behi ◽  
...  

2021 ◽  
Vol 38 (11) ◽  
pp. 118201
Author(s):  
Jianglong Du ◽  
Haolan Tao ◽  
Yuxin Chen ◽  
Xiaodong Yuan ◽  
Cheng Lian ◽  
...  

Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.


Sign in / Sign up

Export Citation Format

Share Document