scholarly journals Membrane-less microbial fuel cell: effect of pH on the electricity generation powered by municipal food waste

2021 ◽  
Vol 2129 (1) ◽  
pp. 012095
Author(s):  
Nurhazirah Mohd Azmi ◽  
Nadira Anandita ◽  
Husnul Azan Tajarudin ◽  
Noor Fazliani Shoparwe ◽  
Muaz Mohd Zaini Makhtar

Abstract Fossil fuels have supported the industrialization and economic growth of countries during the past centuries and it is clear that they cannot indefinitely sustain in a longer time. In this study, membrane-less microbial fuel cell (ML-MFC) with mediators-less and air cathode had potential solution to generate electricity power and at the same time could reduce the abundant of food waste (1.64 kg/daily, around 8 tonnes/year) which dumped in the landfill and it’s cost effective device. The ML-MFC operated electrochemically incorporate electrogenic bacteria (EB) acted as a biocatalyst in order to produce electricity. The performance and optimization performance of food waste was evaluated using one-factor-at-a-time (OFAT) method and it was focused to pH for power generation. To determine the generated electricity the polarization curve was used to evaluate the performance of ML-MFC. The chemical oxygen demand (COD) of food waste was studied. The optimization of pH condition in ML-MFC was ranging from 7 to 9. Results showed that pH 8 was the optimum pH for EB strain, Bacillus Subtilis, with the high voltage (807 mV), EB biomass (15.46 mg/L), and power density (373.3 mW/m2) generated. Clearly the pH environment condition affected the efficiency of ML-MFC performance. The increase in EB biomass also increased the voltage in the ML-MFC, proving that EB biomass and voltage were associated with growth.

2021 ◽  
Vol 411 ◽  
pp. 67-78
Author(s):  
Ivy Ai Wei Tan ◽  
J.R. Selvanathan ◽  
M.O. Abdullah ◽  
N. Abdul Wahab ◽  
D. Kanakaraju

Palm oil mill effluent (POME) discharged without treatment into watercourses can pollute the water source. Microbial fuel cell (MFC) has gained high attention as a green technology of converting organic wastewater into bio-energy. As an approach to overcome the limitations of the existing POME treatment methods, air-cathode MFC-Adsorption system is introduced as an innovative technology to treat POME and generate bio-electricity simultaneously. However, the use of conventional MFC with proton exchange membrane in large scale applications is restricted by the high cost and low power generation. Addition of mediator in MFC is essential in order to increase the electron transfer efficiency, hence enhancing the system performance. This study therefore aims to investigate the effect of different type of mediators i.e. congo red (CR), crystal violet (CV) and methylene blue (MB) on the performance of an affordable air-cathode MFC-Adsorption system made from earthen pot with POME as the substrate. The addition of different mediators altered the pH of the MFC-Adsorption system, in which more alkaline system showed better performance. The voltage generated in the system with CR, CV and MB mediator was 120.58 mV, 168.63 mV and 189.25 mV whereas the current generated was 2.41 mA, 3.37 mA and 3.79 mA, respectively. The power density of 290.79 mW/m3, 568.72 mW/m3 and 716.31 mW/m3 was produced in the MFC-Adsorption system with CR, CV and MB mediator, respectively. The highest POME treatment efficiency was achieved in MFC-Adsorption system with MB mediator, which resulted in biochemical oxygen demand, chemical oxygen demand, total suspended solids, turbidity and ammoniacal nitrogen removal of 75.3%, 84.8%, 91.5%, 86.1% and 23.31%, respectively. Overall, the air-cathode MFC-Adsorption system with addition of MB mediator was feasible for POME treatment and simultaneous bio-energy generation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yuan Haoran ◽  
Deng Lifang ◽  
Lu Tao ◽  
Chen Yong

Much effort has been devoted to the synthesis of novel nanostructured MnO2materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2(HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2(NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment.


2018 ◽  
Vol 78 (9) ◽  
pp. 1990-1996 ◽  
Author(s):  
Dengming Yan ◽  
Xinshan Song ◽  
Baisha Weng ◽  
Zhilei Yu ◽  
Wuxia Bi ◽  
...  

Abstract The aim of this study was to investigate the different performance of bioelectricity generation and wastewater treatment between constructed wetland (CW) respectively coupled with air-cathode microbial fuel cell (ACMFC) and microbial fuel cell (MFC) under a fed-batch mode. During a 75-day-operation, the voltage of CW-ACMFC and CW-MFC ranged from 0.36 to 0.52 V and from −0.04 to 0.07 V, indicating that the bioenergy output of CW-ACMFC was significantly higher than that of CW-MFC system. In addition, the maximum of power density of CW-ACMFC and CW-MFC was 4.21 and 0.005 mW m−2. Notably, the chemical oxygen demand (COD) and NH3-N removal efficiency of CW-ACMFC was slightly higher than that in CW-MFC, which resulted from a higher voltage accelerating the transport of electron donors and the growth of microorganisms and plants. This study possesses a probability of using ACMFC coupled with CW to enhance the pollutant removal performance in CW system.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20036-20045
Author(s):  
Taiki Yamane ◽  
Naoko Yoshida ◽  
Mari Sugioka

Calculations of chemical oxygen demand (COD) degradation in sewage by a microbial fuel cell (MFC) were used to estimate the total energy required for treatment of the sewage.


2020 ◽  
Vol 45 (10) ◽  
pp. 5960-5970 ◽  
Author(s):  
Yun-Jeong Choi ◽  
Hend Omar Mohamed ◽  
Sung-Gwan Park ◽  
Riyam B. Al Mayyahi ◽  
Mujahed Al-Dhaifallah ◽  
...  

2019 ◽  
Vol 9 (02) ◽  
pp. 75
Author(s):  
Krisna Adhitya Wardhana ◽  
Agus Jatnika Effendi

Membraneless-Microbial Fuel Cell (ML-MFC) satu kompartemen dengan katoda kontak udara saat ini sedang dikembangkan dan menjadi alternatif solusi untuk sumber energi terbarukan yang mampu menghasilkan listrik dari proses degradasi substrat. MFC membutuhkan substrat yang kaya senyawa organik seperti air limbah dari proses pencucian pulp. Pada air limbah ini terdapat lindi hitam dalam kondisi terencerkan yang mengandung lignin dan kaya senyawa organik sehingga memiliki potensi untuk digunakan sebagai substrat dalam reaktor MFC. Selain itu, penggunaan substrat berupa air limbah industri memiliki efek yang baik terhadap lingkungan karena berkontribusi dalam pengurangan kontaminan. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi awal Chemical Oxygen Demand (COD) air limbah pencucian pulp sebagai substrat terhadap arus dan voltase listrik yang terjadi dalam MFC. Dalam penelitian ini, reaktor MFC mengolah air limbah pencucian secara batch dengan 4 variasi konsentrasi COD yaitu 613 mg/L, 833 mg/L, 940 mg/L, dan 1620 mg/L dengan pH 8,91 - 10,03. Hasil penelitian menunjukkan MFC mampu mereduksi COD air limbah pencucian pulp sebesar 34 - 48%. Terkait potensi listrik, akumulasi arus listrik yang terjadi pada MFC sebesar 12,67- 39,17 mA/m2 pada kisaran voltase tertinggi dari 4 reaktor sebesar 214 - 287 mV. The Concentration Variation of Wastewater From Pulp Washing Process in Membraneless Air Cathode Microbial Fuel CellA one compartment Membraneless-Microbial Fuel Cell (ML-MFC) with an air cathode was recently developed and became alternative solution for renewable energy sources to generate electricity from substrate degradation. MFC needs proper substrate that was rich in organic content such as wastewater from pulp washing process. The wastewater contains black liquor that was already diluted and contains lignin and high organic content, so that it would be potential as MFC substrate. Furthermore, the utilization of industrial wastewater as substrate can contribute positive effect to the environment namely contaminant reduction. This research was conducted to understand the effect of initial Chemical Oxygen Demand (COD) concentration of wastewater from pulp washing process to electricity current and voltage occured from MFC. The wastewater from pulp washing process with 4 initial COD concentrations (61, 833, 940, and 1620 mg/L) and pH ranged from 8,91 to 10,03 were batch treated in a batch system using the MFC. The results showed that 34-48% COD removal can be performed by MFC. Related with electricity potency from MFC, electricity accumulation current happened on 12,67 mA/m2 - 39,17 mA/m2 at highest voltage from 4 reactors of 214-287 mV.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012098
Author(s):  
Nurul Najwa Adam Malik ◽  
Mohammad Mirza Mohammad Faizal ◽  
Husnul Azan Tajarudin ◽  
Noor Fazliani Shoparwe ◽  
Muaz Mohd Zaini Makhtar

Abstract Electricity constitutes one of the basic energies of our everyday life and approximately 14 % of the global population does not have the access to electricity. An abundance of waste is generated daily wherein food waste constitutes 45 % of the composition. A mediator-less and membrane-less single-chambered microbial fuel cell (ML-MFC) has the potential to serve as a cost-effective solution for food waste treatment and electricity power generation at no additional cost for the substrate. Food waste from E-Idaman Sdn. Bhd. Kedah was utilised in this study to generate electrical energy while focusing on the effect of different yeast extract concentrations on the performance of the ML-MFC. Electrogenic bacterial (EB) culture employed in this study acted as a catalyst for the power generation and was isolated from a previous ML-MFC study. The proximate analysis of food waste observed carbon constituting the greatest composition at 30.02 %. From the conducted preliminary study which compared three different strains of EB to be introduced in the ML-MFC, Bacillus subtillis sp. exhibited the highest specific growth rate, μ, (0.117 g. L−1/h) and shortest doubling time, Td, (5.93 h). One-factor-at-a-time (OFAT) method was utilised to evaluate the performance of the ML-MFC. 15 g/L yeast extract concentration obtained the greatest power density (628.05 × 106 mW/m2), substrate degradation efficiency (12.3 %), COD removal (99 mg/L) and biomass (44.32 mg/L). This showcased that the addition of extra yeast extract concentration into the food waste had boosted the efficiency of EB’s growth resulting in greater consumption of carbon source (removed COD value; bioremediation) in the food waste.


Sign in / Sign up

Export Citation Format

Share Document