scholarly journals FEM analysis of the manufacturing of hollow forgings from a tube billet

2021 ◽  
Vol 2130 (1) ◽  
pp. 012018
Author(s):  
T Bulzak ◽  
G Winiarski ◽  
Ł Wójcik ◽  
M Szala

Abstract The study presents an analysis of the manufacturing process of a hollow forging. The process was proposed to consist of three stages. In the first stage (extrusion) wall thickness was reduced and the flange was formed. In the two subsequent stages the flange was formed. The material flow was examined using FEM. The issue of defect occurrence in the area of a hole caused by the material moving away from the mandrel was especially researched. Moreover, the strain state was analysed in the following forging operations. The distribution of the fracture criterion was presented. Moreover, a prediction of the forces necessary for the process to be performed in real conditions was carried out. The conclusion is that the proposed scheme of forming hollow forgings may be implemented in industrial conditions.

2012 ◽  
Vol 565 ◽  
pp. 662-667
Author(s):  
Yun Huang ◽  
Yong Sheng Chen ◽  
Wei Wan ◽  
Cao Yong Tang ◽  
Ming De Zhang

This paper introduces an automatic ultrasonic wall thickness measurement system, which adopts the way that the tube billet is partially immersed in the water during the measurement, applied in wall abrasive grinding of nuclear fuel encrust tube billet. Meanwhile, the main components of the measurement system, as well as their characters and functions, are addressed. What’s more, the analysis of the factors, which influencing the system stability and measuring reliability, are also conducted, coupling with the system stability and measuring reliability demonstration.


2018 ◽  
Vol 190 ◽  
pp. 04003 ◽  
Author(s):  
Yang Liu ◽  
Marius Herrmann ◽  
Christian Schenck ◽  
Bernd Kuhfuss

In rotary swaging – an incremental cold forming production technique to reduce the diameter of axisymmetric parts – the material flow can be assumed to be predominantly axial and radial. The actual ratio of this axial and radial flow influences the mechanical properties and especially in tube forming the final geometry. It is known that during mandrel free infeed rotary swaging of tubes the wall thickness changes. The change is depending on the process parameters like incremental and cumulated strain. Hence, the ratio of axial and radial material flow changes. Consequently, the analysis of the wall thickness of rotary swaged tubes enables fundamental insight how to control the material flow direction. In this study, the infeed rotary swaging process of steel tubes with different wall thicknesses from 3 mm to 7 mm and rods were investigated with FEM under two feeding velocities. The axial and radial material flow and the resulting geometry were studied by the relative wall thickness. It could be seen that the relative wall thickness was affected by the feeding velocity as well as the initial wall thickness. The findings of the simulation were validated by rotary swaging experiments.


2020 ◽  
Vol 846 ◽  
pp. 139-145
Author(s):  
Shinichi Nishida ◽  
Daichi Uematsu ◽  
Naoki Ikeda ◽  
Kyohei Ogawa ◽  
Makoto Hagiwara ◽  
...  

This paper describes finite element method analysis (FEM analysis), results of burring processing of large diameter steel pipe and fracture criterion in burring process of large diameter steel pipe. In this study, the pipe is the 150A SGP pipe with a diameter of 165.2 mm and a wall thickness of 5 mm. The pipe is used for a plant as a flow channel of gas and liquid. A burring process of pipe is generally for forming the branch. The burring process is achieved by drawing of die from prepared hole. And the branch pipe is welded to the formed pipe. This process has some problem. One is the forming limit of pipe, and the other is needed to machining the end surface to be welded. Therefore, in this study, the forming limit of SGP pipe was estimated by FEM analysis of burring process. The parameters used for criteria for forming limit are the maximum shear stress and the equivalent strain. As a result of comparing the analysis result and the experimental result, the forming limit of the 150A SGP pipe was estimated that the maximum shear stress is 350 MPa and the equivalent strain is around 0.8.


2017 ◽  
Vol 746 ◽  
pp. 3-9
Author(s):  
Vladimir G. Kolobov ◽  
Evgenii V. Aryshenskii ◽  
Yaroslav A. Erisov ◽  
Alexander Nam ◽  
Maksim S. Tepterev

The present study investigates the process of beverage can end forming from 5182 aluminum alloy. Stress-strain state during forming is analyzed using finite element method in PAM-Stamp 2G, and fracturing probability is evaluated based on V.L. Kolmogorov’s fracture criterion. It is established, that stress state does not provide the sufficient plasticity margin during ends forming. Blank material plasticity resource is depleted during preliminary and reverse drawing stages, defects accumulation during countersink forming is negligible. Minimum relative elongation value, responsible for fracture-free end forming, is 6% in the rolling direction.


2014 ◽  
Vol 566 ◽  
pp. 499-504 ◽  
Author(s):  
Leopold Kruszka ◽  
Yu.S. Vorobiov ◽  
N.Yu. Ovcharova

High rate deformations of structures cylindrical elements are considered 3D formulation. Elastic-plastic finite deformations and dynamic properties of material take into account. The problem become geometrically and physically nonlinear and finite element method is used. The numerical analyses of dynamics stress-strain state of real structures elements is executed.


PRICM ◽  
2013 ◽  
pp. 2503-2507
Author(s):  
Daisuke Kawabata ◽  
Hirotaka Kamiyama ◽  
Shinichi Nishida ◽  
Hisaki Watari

2014 ◽  
Vol 611 ◽  
pp. 339-345 ◽  
Author(s):  
Pavol Božek ◽  
Peter Pokorný

Logistics is primarily to address issues with whose functional, organizational, personnel and material means can be improved and optimize the entire course material flow businesses, which shall logistics integration business functions. Production logistics means a sum of logistical tasks and measures for preparation and execution of the production process. Includes all activities associated with material and information flows of raw materials, auxiliary and production materials from the warehouse to the production of raw materials and semi-finished goods from the warehouse and purchased parts through the various steps of the manufacturing process including all buffer stores, through the installation of the finished goods warehouse.


2014 ◽  
Vol 611-612 ◽  
pp. 1657-1664 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter

In high temperature metal forming techniques, analysis of the material flow and deformation as well as wear distribution during forging are very important, because they are directly correlated to the quality of the final component and to the productivity and die life. In this paper a commercially available Finite Element Method based simulator, namely Transvalor Forge 2008©, is used to numerically investigate on the effects of the various parameters on the mode of the failure of dies during hot forging. The exploration has the purpose to evaluate the possibility and related benefits of the advancement from a traditional hot forging process to a modern thixoforging one in the case study of steel-made steering pistons production. As a first step, the part related to the hot forging process is in detailed analyzed, in order to get an exhaustive description of the role of the different parameters. One step and two step solutions are proposed and discussed.


Sign in / Sign up

Export Citation Format

Share Document