scholarly journals Structure and microstructure behavior of iron doped potassium sodium niobate powders

2022 ◽  
Vol 2153 (1) ◽  
pp. 012009
Author(s):  
S Amaya-Zabala ◽  
A Echavarría-Isaza ◽  
J Tobon ◽  
R Roca ◽  
F A Londoño-Badillo

Abstract In this paper, the synthesis and characterization of the potassium sodium niobate doped with iron powders have been studied. Solid-state oxide reaction sintering was used. The powders produced in this work exhibit no homogeneous microstructure, which introduced the growth of random cylindrical structures and will can contribute to the increased porosity ceramics. It was observed average particle size of 3μm, besides, also it was observed the formation of agglomerations and an increase in the size of these clusters with the increase in the amount of iron. The calcination temperature was 950 °C. This is slightly higher than other potassium sodium niobate powders systems. In addition to the physical and microstructural properties, structural properties are presented and analyzed for the first-time using Mössbauer spectroscopy as complementary technique in Fe 3+doped potassium sodium niobate powders. This work is important to state solid physics because establishes the influence of iron in the potassium sodium niobate system, and so the future obtaining of multifunctional materials that have piezoelectric and magnetic properties.

2013 ◽  
Vol 395-396 ◽  
pp. 121-124
Author(s):  
Jia Qi Lin ◽  
Pan Pan Zhang ◽  
Wen Long Yang

A functional potassium sodium niobate/polyimide (KNN/PI) composite films were prepared in this paper. KNN fillers are well dispersed in the PI matrix without any accumulation through in situ polymerization process. The optical band baps of the hybrid films become smaller with the increase of KNN loading. The optical band baps of the films with 0-20 wt% KNN filler are estimated to be 2.61 eV, 2.57 eV, 2.52 eV, 4.29 eV, 2.35 eV respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
DJafar Vatan Khah Dowlat Sara ◽  
Ahmad Rouhollahi ◽  
Seied Mahdi Pourmortazavi ◽  
Mojtaba Shamsipur

This work reports for the first time electrosynthesis of hexanethiol capped silver nanotriangles cores (Ag@C6SH NCs) by a rapid, clean, and simple Double Pulse Chronopotentiometric (DCP) method in nonaqueous media, using a Taguchi orthogonal arrayL8design to identify the optimized experimental conditions. It was found that the size and shape of the product could be tuned by the current density, electrolysis time, electrode distance, and amount of NaBH4% used. The Ag@C6SH NCs in different shapes and sizes (in the range of 30 to 44 nm as an average estimation) were synthesized, under different experimental conditions. Finally, the as-prepared nanoclusters electrosynthesized at optimized conditions were characterized by SEM, XRD, and UV-Vis spectroscopy. The average particle size of the triangular/pyramidal shape (Ag@C6SH NCs), obtained under optimized experimental conditions, was30.5±2.0 nm but the majority of nanoparticles in TC3SEM are so much finer.


TecnoLógicas ◽  
2019 ◽  
Vol 22 (46) ◽  
pp. 15-23
Author(s):  
María C. Quintero ◽  
Miryam Rincón ◽  
Jorge M. Osorio-Guillén ◽  
Diana López ◽  
Fernando Andrés Londoño-Badillo

Piezoelectric materials are widely used in electronic devices and, traditionally, various lead-based materials have been implemented in such applications. However, because of the damage caused by lead, other materials with similar characteristics that do not cause a negative impact on human health and the environment have been developed. A material with those characteristics is potassium-sodium niobite K0.5Na0.5 Nbo3. In this study, we investigate the thermogravimetric, structural, and microstructural properties of powders of such system obtained through oxide mixing with the aim of establishing the effect and efficiency of grinding (using a horizontal and a planetary ball mill grinder) on the production of the final material. It was determined that horizontal grinding and calcination at 900°C create the optimal conditions for obtaining K0.5Na0.5 Nbo3 powders, by oxide mixing, with the adequate structure and microstructure to continue the densification and/or doping processes.


2021 ◽  
Vol 11 (10) ◽  
pp. 4638
Author(s):  
Jose Luis López-Miranda ◽  
Rodrigo Esparza ◽  
Marlen Alexis González-Reyna ◽  
Beatriz Liliana España-Sánchez ◽  
Angel Ramon Hernandez-Martinez ◽  
...  

This work reports, for the first time, the synthesis of silver nanoparticles using extracts of the species of Sargassum natans and Sargassum fluitans (AgNPs-S). Their antibacterial and catalytic properties are compared with silver nanoparticles obtained by chemical synthesis (AgNPs-C). The characterization of AgNPs-S and AgNPs-C was carried out using ultraviolet–visible spectroscopy (UV–Vis), dynamic light scattering (DLS), zeta potential, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis. The synthesis of silver nanoparticles using Sargassum extract was optimized through varying experimental parameters, such as the type of solvent used to prepare the extract, the volume of the extract, and the pH of the system. The most efficient sample (AgNPs-S) was prepared with a water–ethanol-based extract, using a 3:1 volumetric ratio of extract: a precursor salt with the addition of 1 mL of NaOH pH = 14. The AgNPs-C were spherical in shape, with an average particle size of 11.55 nm, while the AgNPs-S were polyhedral shaped, with an average particle size of 26.39 nm. The synthesized AgNPs-S were found to have significantly higher catalytic activity for the degradation of methylene blue and more effective antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa than AgNPs-C.


Sign in / Sign up

Export Citation Format

Share Document