scholarly journals Sargassum Influx on the Mexican Coast: A Source for Synthesizing Silver Nanoparticles with Catalytic and Antibacterial Properties

2021 ◽  
Vol 11 (10) ◽  
pp. 4638
Author(s):  
Jose Luis López-Miranda ◽  
Rodrigo Esparza ◽  
Marlen Alexis González-Reyna ◽  
Beatriz Liliana España-Sánchez ◽  
Angel Ramon Hernandez-Martinez ◽  
...  

This work reports, for the first time, the synthesis of silver nanoparticles using extracts of the species of Sargassum natans and Sargassum fluitans (AgNPs-S). Their antibacterial and catalytic properties are compared with silver nanoparticles obtained by chemical synthesis (AgNPs-C). The characterization of AgNPs-S and AgNPs-C was carried out using ultraviolet–visible spectroscopy (UV–Vis), dynamic light scattering (DLS), zeta potential, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis. The synthesis of silver nanoparticles using Sargassum extract was optimized through varying experimental parameters, such as the type of solvent used to prepare the extract, the volume of the extract, and the pH of the system. The most efficient sample (AgNPs-S) was prepared with a water–ethanol-based extract, using a 3:1 volumetric ratio of extract: a precursor salt with the addition of 1 mL of NaOH pH = 14. The AgNPs-C were spherical in shape, with an average particle size of 11.55 nm, while the AgNPs-S were polyhedral shaped, with an average particle size of 26.39 nm. The synthesized AgNPs-S were found to have significantly higher catalytic activity for the degradation of methylene blue and more effective antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa than AgNPs-C.

2015 ◽  
Vol 797 ◽  
pp. 391-399
Author(s):  
Justyna Zygmuntowicz ◽  
Aleksandra Miazga ◽  
Łukasz Kamiński ◽  
Katarzyna Konopka

The aim of this study was to synthesis and characterization of nickel aluminate spinel (NiAl2O4) prepared of the equilibrium mixture of Al2O3 and NiO. The materials were produced by the solid phase synthesis. In the experiments the following powders were used: α-Al2O3 TM-DAR from Taimei Chemicals (Japan) of an average particle size 133 nm and density 3.96g/cm3 and NiO powder from Sigma-Aldrich of an average particle size 200 nm and density 6.67 g/cm3. The preliminary calcination was carried out at two temperatures: 1000°C and 1200°C. The final sintering of the samples were performed at 1600°C. The characteristics of the powder after calcination and sintered samples were performed using X-ray diffraction studies (XRD), energy dispersive X-ray analysis (EDS) and scanning electron microscopy (SEM). The study of composites confirmed the presence of nickel aluminate (NiAl2O4) in whole volume of the material.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2018 ◽  
Vol 34 (6) ◽  
pp. 3088-3094 ◽  
Author(s):  
Abdul Wahid Wahab ◽  
Abdul Karim ◽  
Nursiah La Nafie ◽  
Nurafni Nurafni ◽  
I. Wayan Sutapa

Silver nanoparticles have been synthesized by reduction method using extract of Muntingia calabura L. leaf a bioreductor. The process of silver nanoparticles formation was monitored by UV-Vis method. The results showed that the absorbance values increased according to the increase of reaction time. Maximum absorption of silver nanoparticle was obtained at a wavelength of 41-421 nm. The size of silver nanoparticles was determined using a PSA (Particle Size Analyzer) with a particle size distribution of 97.04 nm. The functional groups compound that contribute in the synthesis was analyzed using Fourier Transform Infrared Spectroscopy (FTIR). Morphology of the silver nanoparticles was observed by an Scanning Electron Microscope instrument and the structure characterization of the compounds were analyzed using X-Ray Diffraction. The glucose nanosensor based on silver nanoparticles have the measurement range of 1 mM - 4 mM with the regretion (R2) is 0,9516, the detection limit of sensor is 3,2595 mM, the sensitivity of sensor is 2,0794 A. mM-1. mM-2.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 266-270 ◽  
Author(s):  
Ebrahim Izadi ◽  
Ali Rasooli ◽  
Abolfazl Akbarzadeh ◽  
Soodabeh Davaran

AbstractThrough the present study, an eco-friendly method was used to synthesize the gold nanoparticles (GNPs) by using the sodium citrate and extract of the soybean seed as reducing the agents at PH 3. X-Ray diffraction (XRD) method was used to evaluate the crystal structure of as-synthesized NPs and it’s revealed that this method leads to well crystallized GNPs. In order to determine the particle size and their distribution, field emission scanning microscopy (FE-SEM) and dynamic light scattering (DLS) were used. The results showed that, the average particle size distribution of synthesized GNPs in solutions containing of the soybean extract and 1% citrate at PH 3 is about 109.6 and 140.9 nm, respectively. Also, we find that the average size of GNPs is 40 and 33 nm from solutions of citrate and soybean extract, respectively. It was concluded that using the extract of soybean seeds as reducing agent can lead to GNPs with small size and narrow size distribution.


2017 ◽  
Author(s):  
Yusnita Rifai

AbstrakNanopartikel perak telah disintesis menggunakan metode reduksi. Dalam penelitian ini, ekstrak metanol daun Kemangi (Ocimum citriodorum) digunakan sebagai agen pereduksi untuk prekursor AgNO3. Sintesis nanopartikel perak dilakukan dengan mencampurkan laru- tan AgNO3 1mM dengan filtrat ekstrak daun kemangi. Hasil karakterisasi UV-Vis menun- jukkan bahwa nilai absorbansi meningkat dengan meningkatnya waktu kontak reaksi. Pun- cak absorbansi spektrum UV-Vis dari sampel biosintesis nanopartikel perak berkisar pada 427-439 nm selama 1 hari dengan pengadukan dan penyimpanan. Ukuran nanopartikel perak ditentukan menggunakan Pengukur Ukuran Partikel (PSA) dengan rata-rata distribusi uku- ran partikel sebesar 57,38 nm. Efek mekanik dalam proses biosintesis nanopartikel perak cenderung mempercepat pembentukan nanopartikel perak. Hasil karakterisasi menggunakan Difraksi Sinar-X (XRD) diketahui kristalit yang terbentuk memiliki intensitas terbesar pada sudut 38° dengan nilai FWHM 0,66310 (ukuran 0,3 nm) dalam sistem kristal kubik.Kata kunci: Biosintesis, Nanopartikel Perak, Ocimum citriodorum, Karakterisasi AbstractSynthesis of silver nanoparticles by using the reduction method with methanol extract basil (Ocimum citriodorum) leaves, which acted as a reducing agent for AgNO3 precursor have been conducted. Synthesis nanoparticles was carried out by mixing the solution of AgNO3 1mM with filtrate extract of Ocimum leaves. The results of characterization showed that absorbance values increased with the increase in reaction time. Peak of UV-Vis absorption spectrum of biosynthesis sample of silver nanoparticles with stirring and storage each at a wavelength 427-439 nm for 1 day. Silver nanoparticles size was determined by using PSA (Particles Size Analyzer) with an average particle size distribution of 57,38 nm. Mechanical effect in biosynthesis process of silver nanoparticles tends to speed up the formation of silver nanoparticles. The result of characterization by using X-Ray Diffraction (XRD) described that the formed crystal had the angle of 38° with the value of FWHM 0,66310 (sixe 0.3 nm) in cubic crystal system.Key word: Biosynthesis, Silver Nanoparticles, Ocimum citriodorum, Characterization.


2011 ◽  
Vol 299-300 ◽  
pp. 722-726
Author(s):  
Wen Chang Zhuang ◽  
Yu Xiao Wang

Composites have achieved much attention because of their excellent qualities. Core-shell γ-Fe2O3/Au nanoparticles were prepared by chemical reduction. Their optical properties and morphology were characterized by UV-visible spectrum (UV-vis), X-ray diffraction (XRD) and Transmission Electronic Microscopy (TEM). Furthermore, the average particle size and interface structure were also analyzed using small angle X-ray scattering (SAXS).


2021 ◽  
pp. 1873-1878
Author(s):  
Omar Abdulsada Ali ◽  
Sarmed S.M. Al-Awadi

Well dispersed Cu2FeSnSe4 (CFTSe) nanofilms were synthesized by hot-injection method. The structural and morphological measurements were characterized using XRD (X-ray diffraction), Raman spectroscopy, SEM (scanning electron microscopy), and TEM (transmission electron microscopy). Chemical composition and optical properties of as-synthesized CFTSe nanoparticles were characterized using EDS (energy dispersive spectroscopy) and UV-Vis spectrophotometry. The average particle size of the nanoparticles was about 7-10 nm. The UV-Vis absorption spectra showed that the synthesized CFTS nanofilms have a band gap (Eg) of about 1.16 eV. Photo-electrochemical characteristics of CFTSe nanoparticles were studied and indicated their potential application in photovoltaic applications.


2015 ◽  
Vol 1098 ◽  
pp. 104-109 ◽  
Author(s):  
Abul Kalam Azad ◽  
D.D.Y. Setsoafia ◽  
L.C. Ming ◽  
Iskandar Petra

Rare-earth-doped BaCeO3and BaZrO3electrolytes with perovskite structure have been studied extensively in developing proton conducting intermediate temperature SOFC. Acceptor doped alkaline earth cerates and zirconates have been thoroughly studied because of the great interest in their possible applications as solid proton conductors. The perovskite type proton conductor BaCe0.5Zr0.35In0.1Zn0.05O3-δwas prepared in the traditional solid state reaction method. The density of the sample obtained about 96% of the theoretical density after sintering at 1350 °C and X-ray diffraction study confirms the pure phase. Rietveld refinement of the neutron and X-ray powder diffraction data shows that this material crystallizes in the orthorhombic symmetry in the space group Pm3m. Particle size measurement shows that the average particle size is about 2.4 μm. The average thermal expansion at 894 °C was 9.49 x 10-6/°C. Thermogravimetric analysis (TGA) traces obtained for the sample on heating in wet air shows that the maximum proton uptake occurs from 595 °C.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 316 ◽  
Author(s):  
Agata Markowska-Szczupak ◽  
Paulina Rokicka ◽  
Kunlei Wang ◽  
Maya Endo ◽  
Antoni Morawski ◽  
...  

Modified titania photocatalysts were synthesized by the pressure method using titanium(IV) oxide from Grupa Azoty Zakłady Chemiczne “Police” S.A., Police, Poland, and d-glucose solution. Characterization of obtained composites was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), elemental analysis, and measurements of zeta potential and specific surface area (SSA). The possibility of using glucose-titania composites as photocatalysts for simulated solar-assisted disinfection against gram-negative Escherichia coli and gram-positive Stapchyloccocus epidermidis bacteria were examined in two reaction systems, i.e., for suspended and immobilized photocatalysts (on the concrete). It was found that an increase in the d-glucose concentration, i.e., higher carbon content, led to a decrease in antibacterial properties. The sample obtained from 1% of d-glucose solution at 100 °C (TiO2-1%-G-100) showed superior photocatalytic activity under UV-Vis irradiation toward both bacteria species. Water disinfection was more efficient for suspended photocatalyst than that for supported one, where complete disinfection was reached during 55–70 min and 120 min of irradiation, respectively. For the first time, it has been shown that titania modified with monosaccharides can be efficiently used for water disinfection, and the immobilization of photocatalyst on the concrete might be a prospective method for public water supplies.


Sign in / Sign up

Export Citation Format

Share Document