scholarly journals Determination of the content of rare metals in spent anion-exchange resin SIM202 by methods of neutron-activation and mass-spectrometric analysis

2022 ◽  
Vol 2155 (1) ◽  
pp. 012024
Author(s):  
I I Sadikov ◽  
B Kh Yarmatov ◽  
T M Usmanov

Abstract The work is devoted to the development of methods for determining the elemental and isotopic composition of spent ion-exchange resin, industrial waste and environmental objects using an inductively coupled plasma mass spectrometer and analyzing specific samples to determine the content of noble and rare metals in technological materials, industrial waste and natural objects with application of the developed techniques. This article determines the elemental composition of the spent ion-exchange resin SIM202 with the Inductively coupled plasma mass spectrometry (ICP-MS) method and also shows the comparison of the results with neutron activation analysis (NAA). The distribution coefficient of elements in a chromatographic column in ion-exchange resins TAO and SIM202 is given.

2019 ◽  
Vol 11 (11) ◽  
pp. 3129 ◽  
Author(s):  
Po-Kang Shih ◽  
Li-Chi Chiang ◽  
Sheng-Chi Lin ◽  
Tsun-Kuo Chang ◽  
Wei-Chan Hsu

Many factories were built and scattered around the farmlands in Taiwan due to inappropriate land use planning. Illegal effluent discharge of high concentration of metals from the nearby factories has been threatening the farmlands, causing damages to agricultural production, food safety, and human health. Sampling was mostly responsible for monitoring the water quality of the agricultural environment; however, the analysis is of high cost and time consuming. Due to uneasy controlled environmental factors (i.e., illegal effluents) and time-consuming and expensive traditional analysis techniques (i.e., atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma optical emission spectrometry (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS)), we develop a fast-screening method, which is the combination of ion exchange resins and the portable X-ray fluorescence (XRF) spectroscopy to identify the source of contaminants in a mixed industrial and agricultural area in Taoyuan County, Taiwan. The time-lapse ion exchange resin sachet (TIERS) is a non-woven bag that is filled with resins and placed in the irrigation channels for continuously absorbing the metal and trace elements in water. The standardization ratios of Cu/Sr and Zn/Sr were calculated as the pollutant indicators for fast-screening the highly polluted sites of exceedance probability of 2.27% in the monitoring area. The TIERS is verified to detect the metal and trace element concentration in an efficient and sufficient way.


Author(s):  
Gen-ichi Katagiri ◽  
Morio Fujisawa ◽  
Kazuya Sano ◽  
Norikazu Higashiura

Fuji Electric had developed the low pressure oxygen plasma technology for mild decomposition and mineralization of an organic material such as ion exchange resin. This method is suitable for radioactive spent resin volume/weight reduction and stabilization for final disposal. On this process, the ion-exchange resins are vaporized and decomposed into gas-phase with pyrolysis, and then, they are decomposed and oxidized with low-pressure plasma activity based on oxygen. And this process is achieved under moderate condition for radio active waste. • incinerate temperature: 400–700 deg C; • low-pressure (low-temperature) plasma condition: 10–50 Pa. From the result of this process, named of LPOP(low pressure oxidation process) by the inductively coupled plasma, we have confirmed that the process is applicable for organic fireproof waste including ion-exchange resin, and found that the used resin treatment performance is the same as cold test (using imitate spent resin) [1] [2] [3]. In this paper, the outline of the LPOP technology, and two research results on the possibility of solidification with cement of LPOP residue for geological disposes are reported. (1)Study of the residue chemical form after LPOP process (2)Study of the solidification character with cement.


Author(s):  
Kazuya Sano ◽  
Norikazu Higashiura ◽  
Genichi Katagiri ◽  
Morio Fujisawa ◽  
Takeo Shimamura

Low-pressure oxygen plasma processing using ICP (Inductively coupled plasma) is the technology that takes volume reduction and stabilizing treatment of an organic material such as ion exchange resin mildly. We evaluated, for example, treatment performance such as the volume reduction, the weight reduction, and γ specter, H-3,C-14 for the spent ion exchange resin which has actually been produced in the ATR Fugen power station. As a result, a volume reduction rate was achieved not less than 90% (1/10), and a weight reduction rate not less than 95% (1/20). Co −60 was held not less than 0.998 in a processing chamber. In addition, distribution to an effluent gas was not more than 10−6.


2021 ◽  
Vol 43 (5) ◽  
pp. 535-535
Author(s):  
Jaouad Bensalah Jaouad Bensalah ◽  
Mohamed Berradi Mohamed Berradi ◽  
Amar Habsaoui Amar Habsaoui ◽  
Omar Dagdag Omar Dagdag ◽  
Adblhay El Amri Adblhay El Amri ◽  
...  

During this present study, we tested the adsorption performance of heavy metal ions; bivalent lead (Pb (II)) and the anionic dye (methyl orange (MO)) from model aqueous solutions with the ion exchange resin of the Amberliteand#174;IRC-50 type. This performance was evaluated using inductively coupled plasma (ICP) and atomic absorption spectroscopy (AAS). The pH of the solution was adjusted to 6.5 for the bath temperature, the initial mass concentration of Pb (II) and MO was adopted at 20 mg/L, the mass of the resin-type adsorbent Amberliteand#174;IRC-50 was taken at 0.1g and the adsorption capacity Qe was studied. The results obtained during this study show that the kinetic study of the adsorption was obtained at the contact time t = 30 min for the metal Pb (II) and at t = 60 min for the dye MO. These results also showed that the equilibrium of adsorption was reached at time t = 60 min with an adsorption performance of around 99% for Pb (II) and around 96% for MO. Note that the parameters of different mathematical models indicate that the adsorption process is spontaneous in the second degree.


Sign in / Sign up

Export Citation Format

Share Document