scholarly journals Lepton number, black hole entropy and 1032copies of the Standard Model

2010 ◽  
Vol 259 ◽  
pp. 012070 ◽  
Author(s):  
Sergey Kovalenko ◽  
Heinrich Päs ◽  
Ivan Schmidt
2006 ◽  
Vol 15 (01) ◽  
pp. 259-272
Author(s):  
TSAN UNG CHAN

Positive baryon numbers (A>0) and positive lepton numbers (L>0) characterize matter particles while negative baryon numbers and negative lepton numbers characterize antimatter particles. Matter particles and antimatter particles belong to two distinct classes of particles. Matter neutral particles are particles characterized by both zero baryon number and zero lepton number. This third class of particles includes mesons formed by a quark and an antiquark pair (a pair of matter particle and antimatter particle) and bosons which are messengers of known interactions (photons for electromagnetism, W and Z bosons for the weak interaction, gluons for the strong interaction). The antiparticle of a matter particle belongs to the class of antimatter particles, the antiparticle of an antimatter particle belongs to the class of matter particles. The antiparticle of a matter neutral particle belongs to the same class of matter neutral particles. A truly neutral particle is a particle identical with its antiparticle; it belongs necessarily to the class of matter neutral particles. All known interactions of the Standard Model conserve baryon number and lepton number; matter cannot be created or destroyed via a reaction governed by these interactions. Conservation of baryon and lepton number parallels conservation of atoms in chemistry; the number of atoms of a particular species in the reactants must equal the number of those atoms in the products. These laws of conservation valid for interaction involving matter particles are indeed valid for any particles (matter particles characterized by positive numbers, antimatter particles characterized by negative numbers, and matter neutral particles characterized by zero). Interactions within the framework of the Standard Model which conserve both matter and charge at the microscopic level cannot explain the observed asymmetry of our Universe. The strong interaction was introduced to explain the stability of nuclei: there must exist a powerful force to compensate the electromagnetic force which tends to cause protons to fly apart. The weak interaction with laws of conservation different from electromagnetism and the strong interaction was postulated to explain beta decay. Our observed material and neutral universe would signify the existence of another interaction that did conserve charge but did not conserve matter.


2003 ◽  
Vol 18 (22) ◽  
pp. 4085-4096 ◽  
Author(s):  
SHARADA IYER DUTTA ◽  
MARY HALL RENO ◽  
INA SARCEVIC

The ultrahigh energy neutrino cross section is well understood in the standard model for neutrino energies up to 1012 GeV, Tests of neutrino oscillations (νμ ↔ ντ) from extragalactic sources of neutrinos are possible with large underground detectors. Measurements of horizontal air shower event rates at neutrino energies above 1010 GeV will be able to constrain nonstandard model contributions to the neutrino-nucleon cross section, e.g., from mini-black hole production.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Masaki Yamada

Abstract Axion-like particles can source the baryon asymmetry of our Universe through spontaneous baryogenesis. Here we clarify that this is a generic outcome for essentially any coupling of an axion-like particle to the Standard Model, requiring only a non-zero velocity of the classical axion field while baryon or lepton number violating interactions are present in thermal bath. In particular, coupling the axions only to gluons is sufficient to generate a baryon asymmetry in the presence of electroweak sphalerons or the Weinberg operator. Deriving the transport equation for an arbitrary set of couplings of the axion-like particle, we provide a general framework in which these results can be obtained immediately. If all the operators involved are efficient, it suffices to solve an algebraic equation to obtain the final asymmetries. Otherwise one needs to solve a simple set of differential equations. This formalism clarifies some theoretical subtleties such as redundancies in the axion coupling to the Standard Model particles associated with a field rotation. We demonstrate how our formalism automatically evades potential pitfalls in the calculation of the final baryon asymmetry.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950138
Author(s):  
A. Belfakir ◽  
A. belhaj ◽  
Y. El Maadi ◽  
S. E. Ennadifi ◽  
Y. Hassouni ◽  
...  

Using the toroidal compactification of string theory on [Formula: see text]-dimensional tori, [Formula: see text], we investigate dyonic objects in arbitrary dimensions. First, we present a class of dyonic black solutions formed by two different D-branes using a correspondence between toroidal cycles and objects possessing both magnetic and electric charges, belonging to [Formula: see text] dyonic gauge symmetry. This symmetry could be associated with electrically charged magnetic monopole solutions in stringy model buildings of the standard model (SM) extensions. Then, we consider in some detail such black hole classes obtained from even-dimensional toroidal compactifications, and we find that they are linked to [Formula: see text] Clifford algebras using the vee product. It is believed that this analysis could be extended to dyonic objects which can be obtained from local Calabi–Yau manifold compactifications.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Takumi Hayashi ◽  
Kohei Kamada ◽  
Naritaka Oshita ◽  
Jun’ichi Yokoyama

Abstract False vacuum decay is a key feature in quantum field theories and exhibits a distinct signature in the early Universe cosmology. It has recently been suggested that the false vacuum decay is catalyzed by a black hole (BH), which might cause the catastrophe of the Standard Model Higgs vacuum if primordial BHs are formed in the early Universe. We investigate vacuum phase transition of a scalar field around a radiating BH with taking into account the effect of Hawking radiation. We find that the vacuum decay rate slightly decreases in the presence of the thermal effect since the scalar potential is stabilized near the horizon. However, the stabilization effect becomes weak at the points sufficiently far from the horizon. Consequently, we find that the decay rate is not significantly changed unless the effective coupling constant of the scalar field to the radiation is extremely large. This implies that the change of the potential from the Hawking radiation does not help prevent the Standard Model Higgs vacuum decay catalyzed by a BH.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.


Sign in / Sign up

Export Citation Format

Share Document