scholarly journals Prediction of fracture initiation in square cup drawing of DP980 using an anisotropic ductile fracture criterion

2017 ◽  
Vol 896 ◽  
pp. 012111 ◽  
Author(s):  
N Park ◽  
H Huh ◽  
J W Yoon
2011 ◽  
Vol 264-265 ◽  
pp. 813-818 ◽  
Author(s):  
Sang Woo Kim ◽  
Young Seon Lee ◽  
Beom Soo Kang

In this work, in order to predict the forming failure of AZ31 magnesium alloy sheet in drawing process at elevated temperatures, a series of square cup tests at various temperatures and FE analyses were carried out. The critical damage values and the mechanical properties dependent on strain rates and temperatures were evaluated from uniaxial tensile tests and those were utilized to the forming failure prediction using FE analysis. Based on the plastic deformation history obtained from FE analysis and Cockcroft and Latham’s ductile fracture criterion, the fracture initiation time and location were predicted and verified with the experimental results.


2017 ◽  
Vol 27 (8) ◽  
pp. 1231-1251 ◽  
Author(s):  
Xincun Zhuang ◽  
Yehui Meng ◽  
Zhen Zhao

In order to evaluate the prediction error resulting from using average state variables in the calibration procedure of the ductile fracture criterion, a series of experiments and corresponding simulations were performed to extract the evolution of fracture-related state variables such as stress triaxiality (η), Lode parameter, and equivalent strain to fracture at the fracture initiation points. The average stress triaxiality, average Lode parameter, and equivalent strain to fracture were used to calibrate the Lou-Huh (L-H) ductile fracture criterion. The average induced prediction error was evaluated by comparing the accumulated damage value, which was computed with the calibrated L-H ductile fracture criterion at the fracture initiation point, with the critical threshold value. Comparisons based on a series of experiments covering a wide range of values for stress triaxiality indicated the existence of an average induced prediction error for the compression tests, and demonstrated that different values of embedded-constants C1 and C2 of L-H ductile fracture criterion resulted in entirely different average induced prediction errors. Thus, a parameter study was performed to investigate the influences of C1, C2, the relationship of η and equivalent plastic strain ([Formula: see text]), and the internal function of the integral formula on the average induced relative error. The influence of the relationship of [Formula: see text] could be represented by the influence of the exponent a, the intercept for the stress triaxiality, and the allocation of equivalent strain for the segmented function. Among these influence factors, the value of C2, the value of the exponent a, and the value of the negative intercept for stress triaxiality contributed significantly to an increase in relative error.


2012 ◽  
Vol 586 ◽  
pp. 306-309
Author(s):  
Sergei Alexandrov ◽  
Dragisa Vilotic ◽  
Elena Lyamina ◽  
Yeau Ren Jeng

A layer of intensive plastic deformation often appears in the vicinity of frictional interfaces in metal forming processes. The paper presents a study to reveal a possible effect of intensive plastic deformation in such a layer on ductile fracture. To this end, an upsetting test of special design is used to move the site of ductile fracture initiation to the friction surface independently of the effect of intensive plastic deformation on the occurrence of ductile fracture. Experimental results obtained are compared to the theoretical prediction based on a conventional empirical ductile fracture criterion. It is shown that there is some deviation of the fracture conditions predicted theoretically from the experimental results.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Sergei Alexandrov ◽  
Yusof Mustafa ◽  
Mohd Yazid Yahya

The paper presents the theoretical part of a method for identifying constitutive parameters involved in the modified Oyane ductile fracture criterion at high temperature. Quite a general rigid viscoplastic model is adopted to describe material behavior. The ductile fracture criterion is in general path-dependent and involves stresses. Therefore, the identification of constitutive parameters of this criterion is a difficult task which usually includes experimental research and numerical simulation. The latter requires a precisely specified material model and boundary conditions. It is shown in the present paper that for a wide class of material models usually used to describe the behavior of materials at high temperatures, the criterion is significantly simplified when the site of fracture initiation is located on traction free surfaces. In particular, this reduced criterion does not involve stresses. Since there are well established experimental procedures to determine the input data for the reduced criterion, the result obtained can be considered as a theoretical basis for the efficient method for identifying constitutive parameters of the modified Oyane ductile fracture criterion at high temperature. The final expression can also be used in computational models to increase the accuracy of predictions.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianye Gao ◽  
Tao He ◽  
Yuanming Huo ◽  
Miao Song ◽  
Tingting Yao ◽  
...  

AbstractDuctile fracture of metal often occurs in the plastic forming process of parts. The establishment of ductile fracture criterion can effectively guide the selection of process parameters and avoid ductile fracture of parts during machining. The 3D ductile fracture envelope of AA6063-T6 was developed to predict and prevent its fracture. Smooth round bar tension tests were performed to characterize the flow stress, and a series of experiments were conducted to characterize the ductile fracture firstly, such as notched round bar tension tests, compression tests and torsion tests. These tests cover a wide range of stress triaxiality (ST) and Lode parameter (LP) to calibrate the ductile fracture criterion. Plasticity modeling was performed, and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments. Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr–Coulomb (MMC) model and Bai-Wierzbicki (BW) model to develop the 3D ductile fracture envelope. Finally, two ductile damage models were proposed based on the 3D fracture envelope of AA6063. Through the comparison of the two models, it was found that BW model had better fitting effect, and the sum of squares of residual error of BW model was 0.9901. The two models had relatively large errors in predicting the fracture strain of SRB tensile test and torsion test, but both of the predicting error of both two models were within the acceptable range of 15%. In the process of finite element simulation, the evolution process of ductile fracture can be well simulated by the two models. However, BW model can predict the location of fracture more accurately than MMC model.


1998 ◽  
Vol 84 (3) ◽  
pp. 182-187 ◽  
Author(s):  
Hirohiko TAKUDA ◽  
Ken-ichiro MORI ◽  
Masashi KANESHIRO ◽  
Natsuo HATTA

Sign in / Sign up

Export Citation Format

Share Document