scholarly journals Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

2018 ◽  
Vol 979 ◽  
pp. 012001 ◽  
Author(s):  
F M Gazali ◽  
I N Suwastika
2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Aulia Ardhi ◽  
Arina Nadenggan Sidauruk ◽  
Nabella Suraya ◽  
Nova Wahyu Pratiwi ◽  
Usman Pato ◽  
...  

Abstract. Ardhi A, Sidauruk AN, Suraya N, Pratiwi NW, Pato U, Saryono. 2020. Molecular identification of amylase-producing thermophilic bacteria isolated from Bukit Gadang Hot Spring, West Sumatra, Indonesia. Biodiversitas 21: 994-1000.  Amylase is one of the hydrolytic enzymes that is widely used in a wide number of industrial processes such as food, fermentation, textile, paper, detergent, and pharmaceutical industries. Amylase produced by thermophilic bacteria may be thermostable, which is very beneficial in several applications requiring high temperature, for example, the process of gelatinization, liquefaction, and saccharification are performed in high temperature involved in the starch processing. In this study, the amylase-producing ability of thermophilic bacteria isolated from Bukit Gadang hot spring, West Sumatra, Indonesia, was checked and followed by molecular identification. Thirteen isolates that were successfully isolated from the hot springs were microscopically and macroscopically characterized, biochemically tested, and determined their amylase enzyme activity both qualitatively and quantitatively. The isolate that performed the best amylase activity was identified using the molecular technique. The DNA sequencing was carried out in 16S rRNA and continued with BLAST search for species identification. The result of molecular identification showed that the isolate with the best amylase activity was identified as Bacillus licheniformis. The optimum amylase production  (231.33 U/ml)  and the best enzyme-specific activity  (101.79 U/mg) were obtained at the incubation time of 36 hours.


2018 ◽  
Vol 10 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Slamet Ifandi ◽  
Muh Alwi

Thermophilic bacteria can survive at high temperature, in which hot spring is one of its habitats. Indonesia has many hot springs with potential as a habitat for thermophilic bacteria. The purpose of this study was to obtain isolates thermophilic bacteria from Bora hotspring located in Central Sulawesi. This study applied a descriptive-observational study design, characteristics of bacterial properties identified using conventional methods according to the Bergey’s Manual of Determinative Bacteriology. The study was conducted in 3 stages. The first stage was bacteria cultivation on the appropriate media, followed by stage of isolated and the last stage by identified characteristics of thermophilic bacteria which included microscopic and macroscopic morphology, Physiological and biochemistry test. The results of the isolates indicted 4 representative isolated of thermophilic bacteria from Bora Hot Spring namely TM022, TM023, TM024, TM026. The bacteria isolates obtained were bacillus, coccus and Gram negative and positive, while the physiological test of all isolates were able to grow and showed changes in the medium. This study is useful in providing characteristic of indigenous thermophilic bacteria isolates that produces thermostable enzymes.


2020 ◽  
Vol 1434 ◽  
pp. 012034
Author(s):  
P Satrimafitrah ◽  
A R Razak ◽  
J Hardi ◽  
D J Puspitasari ◽  
I Yelenggete ◽  
...  

2010 ◽  
Vol 10 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Hasnah Natsir ◽  
Abd. Rauf Patong ◽  
Maggy Thenawidjaja Suhartono ◽  
Ahyar Ahmad

Chitinase is an extracellular enzyme which is capable in hydrolyzing insoluble chitin to its oligomeric and monomeric components. The enzyme produced by thermophilic bacteria was screened and isolated from Sulili hot spring in Pinrang, South Sulawesi, Indonesia. The gram positive spore forming rod shape bacteria was identified as Bacillus sp. HSA,3-1a through morphological and physiological analysis. The production of chitinase enzyme was conducted at various concentration of colloidal chitin at a pH of 7.0 and a temperature of 55 °C. The bacteria optimally was produced the enzyme at a colloidal chitin concentration of 0.5% after 72 h of incubation. The optimum temperature, pH and substrate concentration of chitinase were 60 °C, 7.0 and 0.3%, respectively. The enzyme was stable at a pH of 7.0 and a temperature of 60 °C after 2 h of incubation. The chitinase activities was increased by addition of 1 mM Mg2+, Ca2+ and Mn2+ ions, whereas the activities were  decreased by 1 mM Co2+, Fe2+ and Zn2 ions. The molecular weight of the crude enzyme was determined using SDS-PAGE analysis. Five protein fractions were obtained from SDS-PAGE, with MWs of 79, 71, 48, 43 and 22 kDa.   Keywords: colloidal chitin, thermophilic bacteria, chitinase


1998 ◽  
Vol 64 (9) ◽  
pp. 3546-3546
Author(s):  
Hiroyuki Yamamoto ◽  
Akira Hiraishi ◽  
Kenji Kato ◽  
Hiroshi X. Chiura ◽  
Yonosuke Maki ◽  
...  

Biologia ◽  
2015 ◽  
Vol 70 (7) ◽  
Author(s):  
Ömer Acer ◽  
Hemşe Pırınççiğlu ◽  
Fatma Matpan Bekler ◽  
Reyhan Gül-Güven

AbstractThe present study was conducted to isolate α-amylase-producing thermophilic bacteria from Darge¸cit hot springs in Turkey. The morphological, biochemical and physiological characterisation, as well as genetic analysis by 16S rRNA sequences indicated that the isolated strain AH1 was a member of Anoxybacillus genus. The strain was aerobe, Gram-positive and spore-forming rod, exhibiting optimum growth temperature and pH of 60ºC and 7.0-7.5, respectively. Optimization of growth medium and enzyme assay conditions for extracellular α-amylase production by the novel thermophilic Anoxybacillus sp. AH1 were carried out in many different media containing a variety of carbon and nitrogen sources. Among various carbon and nitrogen sources, peptone (2054.1 U/mL) at 1% and maltose (1862.9 U/mL) at 0.5% increased α-amylase activity, compared to controls. Moreover, a high enzyme production was observed with potato starch at 0.5% and 1% (2668.4 U/mL and 3627 U/mL, respectively), as well as with 1% soluble starch (2051.9 U/mL). The enzyme activity was found to be rather high in the presence of CaCl


2019 ◽  
Author(s):  
Ishfaq Nabi Najar ◽  
Mingma Thundu Sherpa ◽  
Sayak Das ◽  
Nagendra Thakur

AbstractMechanisms of occurrence and expressions of antibiotic resistance genes (ARGs) in thermophilic bacteria are still unknown owing to limited research and data. The evolution and proliferation of ARGs in the thermophilic bacteria is unclear and needs a comprehensive study. In this research, comparative profiling of antibiotic resistance genes and metal tolerance genes among the thermophilic bacteria has been done by culture-independent functional metagenomic methods. Metagenomic analysis showed the dominance of Proteobacteria, Actinobacteria. Firmicutes and Bacteroidetes in these hot springs. ARG analysis through shotgun gene sequencing was found to be negative in case of thermophilic bacteria. However, few of genes were detected but they were showing maximum similarity with mesophilic bacteria. Concurrently, metal resistance genes were also detected in the metagenome sequence of hot springs. Detection of metal resistance gene and absence of ARG’s investigated by whole genome sequencing, in the reference genome sequence of thermophilic Geobacillus also conveyed the same message. This evolutionary selection of metal resistance over antibiotic genes may have been necessary to survive in the geological craters which are full of different metals from earth sediments rather than antibiotics. Furthermore, the selection could be environment driven depending on the susceptibility of ARG’s in thermophilic environment as it reduces the chances of horizontal gene transfer. With these findings this article highlights many theories and culminates different scopes to study these aspects in thermophiles.


Author(s):  
Yelizaveta Rassadkina ◽  
Spencer Roth ◽  
Tamar Barkay

Yellowstone National Park is home to many different hot springs, lakes, geysers, pools, and basins that range in pH, chemical composition, and temperature. These different environmental variations provide a broad range of conditions that select and grow diverse communities of microorganisms. In this study, we collected samples from geochemically diverse lakes and springs to characterize the microbial communities present through 16S rRNA metagenomic analysis. This information was then used to observe how various microorganisms survive in high mercury environments. The results show the presence of microorganisms that have been studied in previous literature. The results also depict gradients of microorganisms including thermophilic bacteria and archaea that exist in these extreme environments. In addition, beta diversity analyses of the sequence data showed site clustering based primarily on temperature instead of pH or sample site, suggesting that while pH, temperature, and sample site were all shown to be significant, temperature is the strongest factor driving microorganism community development. While it is important to characterize the microorganism community present, it is also important to understand how this community functions as a result of its selection. Along with looking at community composition, genomic material was tested to see if it contained mercury methylating (hgcA) or mercury reducing (merA) genes. Out of 22 samples, three of them were observed to have merA genes, while no samples had hgcA genes. These results indicate that microorganisms in Mustard and Nymph Springs may use mercury reduction. Understanding how microorganisms survive in environments with high concentrations of toxic pollutants is crucial because it can be used as a model to better understand mechanisms of resistance and the biogeochemical cycle, as well as for bioremediation and other solutions to anthropogenic problems.


2019 ◽  
Vol 58 (1) ◽  
Author(s):  
A.S. Mashzhan ◽  
B. Nils-Kåre ◽  
A.S. Kistaubaeva ◽  
A.B. Talipova ◽  
Zh.K. Batykova ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 1-10
Author(s):  
Tengku Hamid ◽  
◽  
Nur Abidin ◽  
Nurmusfirah Hasan ◽  
◽  
...  

Hot spring is a natural habitat for thermophilic bacteria and the primary source of thermostable enzymes useful in industrial applications. In Malaysia, the search for thermophilic organisms has been focused on hot springs, especially on the peninsular West coast. In this work, lipase or esterase producing thermophilic microorganisms were isolated from East coast hot springs in Pahang and Terengganu's states. Morphological and biochemical analysis were carried out on Isolates LH1, LH2, LH3, LH4, LH5, B2B2 and S1B4, which showed that they are gram positive, aerobic, spore forming, and motile organisms. All of the seven isolates showed the ability to grow at 45°C and formed hydrolysis zones on tributyrin agar plates. However, only isolate B2B2 and S1B4 were able to thrive at higher temperatures of up to 65°C. The genotypic characterisation was carried out using 16S rRNA sequencing. Bacillus and Geobacillus species were found to be the dominant bacteria isolated from these hot springs. From La hot spring, isolate LH1 (MT 645486), Isolates LH2 (MT645483), LH3 (MT645484), LH4 (MT 645485) and LH5 (MT 645487) were all closely related to Bacillus sp. (at 97.3-97.9%). Meanwhile, from Bentong and Sungai Lembing hot springs, isolates B2B2 (MT668631) and S1B4 (MT668632) were near related to either Geobacillus kaustophilus or Geobacillus thermoleovorans; each at 98.5% and 97.9% similarity, respectively. These strains from Geobacillus sp. were able to thrive at higher temperature and their thermostable esterases or lipases have properties useful for biotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document