The DUNE dual-phase liquid argon TPC

2020 ◽  
Vol 15 (05) ◽  
pp. C05064-C05064
Author(s):  
E. Chardonnet
Keyword(s):  
Instruments ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 35
Author(s):  
Adam Lowe ◽  
Krishanu Majumdar ◽  
Konstantinos Mavrokoridis ◽  
Barney Philippou ◽  
Adam Roberts ◽  
...  

The ARIADNE Experiment, utilising a 1-ton dual-phase Liquid Argon Time Projection Chamber (LArTPC), aims to develop and mature optical readout technology for large scale LAr detectors. This paper describes the characterisation, using cosmic muons, of a Timepix3-based camera mounted on the ARIADNE detector. The raw data from the camera are natively 3D and zero suppressed, allowing for straightforward event reconstruction, and a gallery of reconstructed LAr interaction events is presented. Taking advantage of the 1.6 ns time resolution of the readout, the drift velocity of the ionised electrons in LAr was determined to be 1.608 ± 0.005 mm/μs at 0.54 kV/cm. Energy calibration and resolution were determined using through-going muons. The energy resolution was found to be approximately 11% for the presented dataset. A preliminary study of the energy deposition (dEdX) as a function of distance has also been performed for two stopping muon events, and comparison to GEANT4 simulation shows good agreement. The results presented demonstrate the capabilities of this technology, and its application is discussed in the context of the future kiloton-scale dual-phase LAr detectors that will be used in the DUNE programme.


2018 ◽  
Vol 13 (11) ◽  
pp. P11003-P11003 ◽  
Author(s):  
B. Aimard ◽  
Ch. Alt ◽  
J. Asaadi ◽  
M. Auger ◽  
V. Aushev ◽  
...  

2021 ◽  
Vol 16 (08) ◽  
pp. P08063
Author(s):  
B. Aimard ◽  
L. Aizawa ◽  
C. Alt ◽  
J. Asaadi ◽  
M. Auger ◽  
...  

2019 ◽  
Vol 214 ◽  
pp. 09001
Author(s):  
Karol Hennessy

DUNE is a long baseline neutrino experiment due to take data in 2025. Two prototypes of the DUNE far detector were built to assess candidate technologies and methods in advance of the DUNE detector build. Here are described the data acquisition (DAQ) systems for both of its prototypes, Proto-DUNE single-phase (SP) and ProtoDUNE dual-phase (DP). The ProtoDUNEs also break records as the largest beam test experiments yet constructed, and are the fundamental elements of CERN’s Neutrino Platform. This renders each ProtoDUNE an experiment in its own right and the design and construction have been chosen to meet this scale. Due to the aggressive timescale, off-the-shelf electronics have been chosen to meet the demands of the experiments where possible. The ProtoDUNE-SP cryostat comprises two primary sub-detectors - a single phase liquid Argon TPC and a companion Photon Detector. The TPC has two candidate readout solutions under test in ProtoDUNE-SP – RCE (ATCAbased) and FELIX (PCIe-based). Fermilab’s artDAQ is used as the dataflow software for the single phase experiment. ProtoDUNE-DP will read out the dual-phase liquid argon detector using a microTCA solution. The timing, triggering, and compression schemes are described for both experiments, along with mechanisms for sending data offline to permanent data storage in CERN’s EOS infrastructure. This paper describes the design and implementation of the TDAQ systems as well as first measurements of their performance.


2019 ◽  
Vol 209 ◽  
pp. 01031
Author(s):  
S. Sanfilippo ◽  
P. Agnes ◽  
M. Arba ◽  
M. Ave ◽  
E. Baracchini ◽  
...  

Directional sensitivity to nuclear recoils could provide a smoking gun for a possible discovery of dark matter in the form of WIMPs. A hint of directional dependence of the response of a dual-phase liquid argon Time Projection Chamber was found in the SCENE experiment. Given the potential importance of such a capability in the frame work of dark matter searches, a new dedicated experiment, ReD (Recoil Directionality), was designed in the framework of the DarkSide Collaboration, in order to scrutinize this hint. This contribution will describe the performance of the detectors achieved during the first test-beam, the current status of ReD and the perspectives for physics measurements during the forthcoming beam-time.


Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2014 ◽  
Vol 9 (02) ◽  
pp. P02006-P02006 ◽  
Author(s):  
K Mavrokoridis ◽  
F Ball ◽  
J Carroll ◽  
M Lazos ◽  
K J McCormick ◽  
...  

2017 ◽  
Vol 164 ◽  
pp. 07036
Author(s):  
Matteo Cadeddu ◽  
Giovanni Batignani ◽  
Walter Marcello Bonivento ◽  
Bianca Bottino ◽  
Luigi Campajola ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document