Special features of manufacturing cutting inserts from nanocomposite material Al2O3-SiC

2021 ◽  
Vol 16 (10) ◽  
pp. P10015
Author(s):  
E. Gevorkyan ◽  
A. Mamalis ◽  
R. Vovk ◽  
Z. Semiatkowski ◽  
D. Morozow ◽  
...  
Author(s):  
Salman Khani ◽  
Seyedhamidreza Shahabi Haghighi ◽  
Mohammad Reza Razfar ◽  
Masoud Farahnakian

In this paper, the thread turning of aluminum 7075-T6 alloy is studied using micro-hole textured solid-lubricant embedded carbide inserts. The primary focus of this work is to enhance the performance of the thread turning process for producing high quality threaded parts. To achieve this, micro-holes were generated by laser micro-machining on the rake face of tools and then, MoS2 and CNT (carbon nanotube) solid-lubricants were embedded into micro-holes. The effects of micro-holes and solid-lubrication on the performance of the thread turning process were examined using traditional tool ( T0), micro-hole textured tool ( T1), micro-hole textured MoS2 embedded tool ( T2), and micro-hole textured CNT embedded tool ( T3). In this study, cutting forces, chip-tool contact length, built-up edge (BUE), surface roughness, and operating cost were investigated. The influence of micro-hole generation on the mechanical strength of cutting inserts was evaluated using the finite element method. The results showed that the fabrication of the micro-holes on the rake surface of cutting inserts has no significant effect on the mechanical strength of the tools. The comparisons of our method with traditional tools demonstrated that the cutting performance improved in the threading process. Our results reveal that the main cutting force, radial thrust force, surface roughness, built-up edge, and chip-tool contact length reduced 37.1%, 40.9%, 37.9%, 58.3%, and 38.2%, respectively, as T3 tools are applied in this process. A cost analysis, based on estimated tooling costs, showed that the T3 tool can yield an 18% reduction in overall operating cost.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3432
Author(s):  
Edwin Gevorkyan ◽  
Mirosław Rucki ◽  
Tadeusz Sałaciński ◽  
Zbigniew Siemiątkowski ◽  
Volodymyr Nerubatskyi ◽  
...  

The paper presents results of investigations on the binderless nanostructured tungsten carbide (WC) cutting tools fabrication and performance. The scientific novelty includes the description of some regularities of the powder consolidation under electric current and the subsequent possibility to utilize them for practical use in the fabrication of cutting tools. The sintering process of WC nanopowder was performed with the electroconsolidation method, which is a modification of spark plasma sintering (SPS). Its advantages include low temperatures and short sintering time which allows retaining nanosize grains of ca. 70 nm, close to the original particle size of the starting powder. In respect to the application of the cutting tools, pure WC nanostructure resulted in a smaller cutting edge radius providing a higher quality of TiC/Fe machined surface. In the range of cutting speeds, vc = 15–40 m/min the durability of the inserts was 75% of that achieved by cubic boron nitride ones, and more than two times better than that of WC-Co cutting tools. In additional tests of machining 13CrMo4 material at an elevated cutting speed of vc = 100 m/min, binderless nWC inserts worked almost three times longer than WC-Co composites.


2020 ◽  
Vol 87 (12) ◽  
pp. 768-776
Author(s):  
Marcel Plogmeyer ◽  
Germán González ◽  
Volker Schulze ◽  
Günter Bräuer

AbstractThe development of thin-film sensors for temperature and wear measurement in machining operations is presented in this work. A functional thin-film system, consisting of an Al2O3 insulation layer, a chromium sensor layer structured by photolithography and an Al2O3 wear-protection and insulation layer, is deposited by physical vapor deposition (PVD) processes onto the surface of cemented carbide cutting inserts. First specimen of the sensors are successfully fabricated and tested in laboratory experiments as well as in machining operations to demonstrate their functionality. These tool-integrated sensors can be used as an in-process monitoring device to determine the temperatures on the rake face at or close to the tool-chip contact area and to measure the progress of the flank-wear land width. The knowledge of these important process parameters opens up the possibility to develop new in-process control mechanisms in order to modify and improve the surface integrity of manufactured components. Thereby, their performance and lifetime can be enhanced.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 16841-16848
Author(s):  
Younghyun Cha ◽  
Yong-Ju Park ◽  
Do Hyun Kim

Fe2O3@MoS2 0D/2D-nanocomposite material was synthesized in an aqueous solution using a Taylor–Couette flow reactor.


2021 ◽  
Vol 23 (7) ◽  
Author(s):  
Azeez O. Idris ◽  
Potlako J. Mafa ◽  
Ekemena O. Oseghe ◽  
Titus A. M. Msagati ◽  
Usisipho Feleni ◽  
...  

2010 ◽  
Vol 67 (7) ◽  
pp. 390-396 ◽  
Author(s):  
Yuka OKADA ◽  
Akiko MURATA ◽  
Takamasa ANDO ◽  
Tatsutoshi SUENAGA ◽  
Tsuguhiro KORENAGA ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (45) ◽  
pp. 38906-38912 ◽  
Author(s):  
Machhindra S. Bhalerao ◽  
Anand V. Patwardhan ◽  
Manohar A. Bhosale ◽  
Vaishali M. Kulkarni ◽  
Bhalchandra M. Bhanage

A facile approach for the synthesis of a novel epoxidised soybean oil–Cu/Cu2O (ESO–Cu/Cu2O) bio-nanocomposite material via ultrasound irradiation with antibacterial activity was investigated.


Sign in / Sign up

Export Citation Format

Share Document