nanostructured tungsten carbide
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3432
Author(s):  
Edwin Gevorkyan ◽  
Mirosław Rucki ◽  
Tadeusz Sałaciński ◽  
Zbigniew Siemiątkowski ◽  
Volodymyr Nerubatskyi ◽  
...  

The paper presents results of investigations on the binderless nanostructured tungsten carbide (WC) cutting tools fabrication and performance. The scientific novelty includes the description of some regularities of the powder consolidation under electric current and the subsequent possibility to utilize them for practical use in the fabrication of cutting tools. The sintering process of WC nanopowder was performed with the electroconsolidation method, which is a modification of spark plasma sintering (SPS). Its advantages include low temperatures and short sintering time which allows retaining nanosize grains of ca. 70 nm, close to the original particle size of the starting powder. In respect to the application of the cutting tools, pure WC nanostructure resulted in a smaller cutting edge radius providing a higher quality of TiC/Fe machined surface. In the range of cutting speeds, vc = 15–40 m/min the durability of the inserts was 75% of that achieved by cubic boron nitride ones, and more than two times better than that of WC-Co cutting tools. In additional tests of machining 13CrMo4 material at an elevated cutting speed of vc = 100 m/min, binderless nWC inserts worked almost three times longer than WC-Co composites.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 836
Author(s):  
Rita C. Bicho ◽  
Janeck J. Scott-Fordsmand ◽  
Mónica J.B. Amorim

It has become clear how important it is to assess longer term effects of (nano) materials in the environment given the current evidence showing how epigenetics drives response mechanisms. Here we studied global DNA methylation in standard soil invertebrate Enchytraeus crypticus over 224 days when exposed to nanostructured tungsten carbide cobalt (WCCo nanomaterials (NMs)) and to cobalt (CoCl2) in a multigenerational experiment. In order to assess the transgenerational effect, we used a multigenerational (MG) test design consisting of four generations in spiked soil followed by two generations in clean soil. Results showed that MG exposure to WCCo NMs caused global DNA methylation to increase, which continued in unexposed generations and was associated with an increase in reproduction (phenotypic effect). In general, WCCo NMs caused more (and more consistent) methylation than CoCl2.


2017 ◽  
Vol 899 ◽  
pp. 31-35
Author(s):  
Maria Jose S. Lima ◽  
M.V.M. Souto ◽  
A.S. Souza ◽  
M.M. Karimi ◽  
F.E.S. Silva ◽  
...  

The carbides of refractory metals like tungsten carbide (WC), tantalum carbide (TaC) and niobium carbide (NbC), has been extensively studied due to their applications in several areas of industry, because of their specific properties; such as high melting point, high hardness, wear resistance, oxidation resistance and good electrical conductivity. The tungsten carbide, particularly, is generally used at hardmetal industries due to its high hardness and wear resistance. New synthesis techniques have been developed to reduce the synthesis temperature of refractory metal carbides using more reactive precursors and gas-solid reactions for carbon reduction. The result is producing pure carbides suitable properties for production of high quality cemented carbides and more selective catalysts. In this work, pure and nanostructured WC was obtained from the ammonium paratungstate hydrate (APT), at low temperature and short reaction time. Hydrogen (H2) and methane (CH4) were used as a reducing gas and carbon source, respectively. The precursor and obtained product were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results obtained by diffraction of X-rays showed that complete reduction and carburization of APT have been took place resulted in pure WC formation. The average crystallite size was in nanometer order reaching values of approximately 20.8 nm and a surface area (BET) of 26.9 m2/g.


2016 ◽  
Vol 24 (20) ◽  
pp. 22730 ◽  
Author(s):  
Xinping Zhang ◽  
Haibin Wang ◽  
Meng Wang ◽  
Yuanhai Lin ◽  
Xiaoyan Song

2015 ◽  
Vol 651-653 ◽  
pp. 467-472 ◽  
Author(s):  
Yuri Zhuk

This paper presents the applications of advanced CVD Tungsten Carbide coating to extend the life of tooling used for forming abrasive and corrosive materials.Hardide nanostructured Tungsten Carbide coating combines high hardness (70-77Rc) with excellent toughness. Unlike other hard coatings Hardide can produce a conformal coating layer on complex-shaped tools, including internal surfaces of extrusion die cavities and moulds. In ASTM G65 test the Hardide coating abrasion resistance exceeded WC/Co (9%) cemented carbide by a factor of 4X, and D2 tool steel by 10X. Thus the coating can significantly increase the life of D2 steel tooling used for forming abrasive materials and by maintaining better dimensional tolerances and surface finish of the tool it will manufacture better quality products.The Hardide coating has enhanced resistance to corrosion and aggressive media, including acids; this makes the coating especially suitable for the tooling used in forming uPVC, PTFE and other corrosive materials.The Hardide coating has been tested on extrusion and pelletizing dies processing abrasive and corrosive slurries and typically showed a 3X increase in the life of the tooling. Similar results were achieved by the coating of powder compaction punch/die sets for pharmaceuticals tableting.


RSC Advances ◽  
2015 ◽  
Vol 5 (87) ◽  
pp. 70743-70748 ◽  
Author(s):  
Zhiwei Liu ◽  
Ping Li ◽  
Fuqiang Zhai ◽  
Qi Wan ◽  
Alex A. Volinsky ◽  
...  

Nanostructured tungsten carbide is used as the catalyst in a gas diffusion electrode. The presence of the appropriate amorphous carbon is beneficial for improving the conductivity and dispersibility of the tungsten carbide catalyst.


Sign in / Sign up

Export Citation Format

Share Document