scholarly journals Quality and sensitivity of high-resolution numerical simulation of urban heat islands

2014 ◽  
Vol 9 (5) ◽  
pp. 055001 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid
Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 118
Author(s):  
Yan Chen ◽  
Ning Zhang ◽  
Yan Zhu

City thermal discomfort conditions have been exacerbated by the rapid urbanization processes in China. High-resolution urban thermal climate simulations can help us to understand urban climate features and produce better urban designs. In this paper, a single-layer urban canopy model (UCM) combined with Landsat satellite data and high-resolution meteorological forcing data was used to simulate very-high-resolution characteristics of temperature and humidity at the urban canopy level, and the heat index at the pedestrian level was also estimated. The research shows that the National center of environmental forecasting, Oregon state university, Air force and Hydrological research lab (NOAH)-UCM model can simulate the distribution of meteorological elements for different land uses in a fine and effective manner, making it an effective approach to obtaining the fundamental data for urban climate analysis. The spatial distribution pattern of urban heat islands in Suzhou is highly consistent with urban land cover fraction. High-density and medium-density urban areas are centers of urban heat islands, and the annual number of high-temperature days and heat indices over the high-density and medium-density urban areas are markedly higher than those in low-density cities and suburbs, indicating that urban development has a significant impact on the urban thermal environment.


2020 ◽  
Vol 17 ◽  
pp. 19-22 ◽  
Author(s):  
Edoardo Bucchignani ◽  
Paola Mercogliano

Abstract. In this work, some preliminary numerical simulations with the COSMO model including TERRA_URB parameterization have been performed. In particular, this work concerns simulations over a small domain located in southern Italy, in order to test the capabilities of the model in reproducing the main climate features of Urban Heat Islands over this area. Model evaluation has been performed in terms of 2 m temperature in an urban area and in a rural one, in order to highlight the behaviour of the parameterization in different contexts. Numerical results encourage further investigation and development of urban parameterization in very high-resolution configuration of limited area models and specifically of COSMO, to improve the representation of the maximum daily values of temperature and diurnal cycle especially in urban, but also in rural areas. Furthermore a better parameter tuning is still required for this specific test case.


Author(s):  
R. Mongeau ◽  
Y. Baudouin ◽  
F. Cavayas

Ville de Montreal wanted to develop a system to identify heat islands and microparticles at the urban scale and to study their formation. UQAM and UdeM universities have joined their expertise under the framework "Observatoire Spatial Urbain" to create a representative geospatial database of thermal and atmospheric parameters collected during the summer months. They innovated in the development of a methodology for processing high resolution hyperspectral images (1–2 m). In partnership with Ville de Montreal, they integrated 3D geospatial data (topography, transportation and meteorology) in the process. The 3D mapping of intraurban heat islands as well as air micro-particles makes it possible, initially, to identify the problematic situations for future civil protection interventions during extreme heat. Moreover, it will be used as a reference for the Ville de Montreal to establish a strategy for public domain tree planting and in the analysis of urban development projects.


2021 ◽  
Vol 70 ◽  
pp. 1-14
Author(s):  
Mohamed Anis Fekih ◽  
Walid Bechkit ◽  
Herve Rivano ◽  
Manoel Dahan ◽  
Florent Renard ◽  
...  

2021 ◽  
pp. 111051
Author(s):  
M.E. Gonzalez-Trevizo ◽  
K.E. Martinez-Torres ◽  
J.F. Armendariz-Lopez ◽  
M. Santamouris ◽  
G. Bojorquez-Morales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document