scholarly journals The role of lake morphometry in modulating surface water carbon concentrations in boreal lakes

Author(s):  
Joan Pere Casas-Ruiz ◽  
Julia Jakobsson ◽  
Paul A del Giorgio
2021 ◽  
Vol 640 ◽  
pp. 119740
Author(s):  
Li Zhang ◽  
Nigel Graham ◽  
Nicolas Derlon ◽  
Youneng Tang ◽  
Muhammad Saboor Siddique ◽  
...  

2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


2019 ◽  
Vol 5 (12) ◽  
pp. 2242-2250
Author(s):  
Xue Shen ◽  
Baoyu Gao ◽  
Kangying Guo ◽  
Qinyan Yue

Coagulation prior to the ultrafiltration (UF) process was implemented to improve natural organic matter (NOM) removal and membrane permeability.


2018 ◽  
Vol 63 (5) ◽  
pp. 2171-2178 ◽  
Author(s):  
David A. Seekell ◽  
Pär Byström ◽  
Jan Karlsson

2013 ◽  
Vol 117 (40) ◽  
pp. 10368-10380 ◽  
Author(s):  
Julia Tofan-Lazar ◽  
Arthur Situm ◽  
Hind A. Al-Abadleh

2017 ◽  
Vol 3 (4) ◽  
pp. 744-756 ◽  
Author(s):  
R. Floris ◽  
G. Moser ◽  
K. Nijmeijer ◽  
E. R. Cornelissen

To understand and mitigate the role of surface water composition and associated membrane fouling in the removal of nC60 nanoparticles by low-pressure membranes, experiments were carried out with microfiltration membranes using natural feed waters, mimicking separation in real industrial water treatment plants.


Behaviour ◽  
2017 ◽  
Vol 154 (12) ◽  
pp. 1177-1196 ◽  
Author(s):  
Mallary Clay ◽  
Jim Stoeckel ◽  
Brian Helms

Environmental cues contain critical information for individuals while searching for mates and suitable habitat. Crayfish have well-developed chemosensory abilities for detecting environmental cues in water; much less is known about these abilities on land. The Devil crayfish (Cambarus diogenes) is a burrowing crayfish often found in dense floodplain colonies as adults. Juveniles however are released in surface water and must navigate overland to burrow. Previous work demonstrates juveniles use cues from conspecific adults, and to a lesser extent, soil cues, for burrow site selection. Using mesocosms, we build on this by examining burrowing cues associated with (1) congeneric adults, (2) excavated burrow material and (3) other juveniles. In contrast to conspecific adults, cues provided by congeneric adults did not override cues associated with soil type. Similarly, juveniles burrowed closer to conspecific adult burrow mounds than to congeneric and human-built mounds. Juveniles also showed significant grouping behaviour in the absence of all other cues. These results suggest juvenile crayfish integrate multiple terrestrial cues for burrow site selection.


1997 ◽  
Vol 198 (1-4) ◽  
pp. 1-29 ◽  
Author(s):  
J. Bromley ◽  
J. Brouwer ◽  
A.P. Barker ◽  
S.R. Gaze ◽  
C. Valentine

2011 ◽  
Vol 243-249 ◽  
pp. 3238-3243
Author(s):  
Zhen Wei Jiang ◽  
Qi Yao Wang

The role of surface water is also the main reason for the formation and development of ground fissures. Five mechanisms were obtained on the formation of ground fissures under the role of surface water in the loess region through theoretical analysis, i.e., fissuring mechanism induced by loess collapsible deformation; that induced by dissolution and suffosion; that induced by water-loss shrinkage; that induced by hydraulic pressure; that induced by humidification and softening. As the role of surface water had certain phased and periodic characteristics, repeated fissuring mechanism of ground fissures was analyzed. Consequently, it could be known that the repeated fissuring of ground fissures under the role of surface water was mainly shown as horizontal openness and closure with little vertical displacement, and fissures were intersected and cross-cut with each other to form a complex network structure.


Sign in / Sign up

Export Citation Format

Share Document