scholarly journals Potential risk to water resources under eco-restoration policy and global change in the Tibetan Plateau

Author(s):  
Yang Xiao ◽  
Qinli Xiong ◽  
Pinghan Liang ◽  
Qiang Xiao
2021 ◽  
Author(s):  
Dongfeng Li ◽  
Xixi Lu ◽  
Ting Zhang

<p>Sediment flux in cold environments is a crucial proxy to link glacial, periglacial, and fluvial systems and highly relevant to hydropower operation, water quality, and the riverine carbon cycle. However, the long-term impacts of climate change and multiple human activities on sediment flux changes in cold environments remain insufficiently investigated due to the lack of monitoring and the complexity of the sediment cascade. Here we examine the multi-decadal changes in the in-situ observed fluvial sediment fluxes from two types of basins, namely, pristine basins and disturbed basins, in the Tibetan Plateau and its margins. The results show that the fluvial sediment fluxes in the pristine Tuotuohe headwater have substantially increased over the past three decades (i.e., a net increase of 135% from 1985–1997 to 1998–2017) due to the warming and wetting climate. We also quantify the relative impacts of air temperature and precipitation on the increases in the sediment fluxes with a novel attribution approach and finds that climate warming and intensified glacier-snow-permafrost melting is the primary cause of the increased sediment fluxes in the pristine cold environment (Tuotuohe headwater), with precipitation increase and its associated pluvial processes being the secondary driver. By contrast, the sediment fluxes in the downstream disturbed Jinsha River (southeastern margin of the Tibetan Plateau) exhibit a net increase of 42% from 1966-1984 to 1985-2010 mainly due to human activities such as deforestation and mineral extraction (contribution of 82%) and secondly because of climate change (contribution of 18%). Then the sediment fluxes dropped by 76% during the period of 2011-2015 because of the operations of six cascade reservoirs since 2010. In an expected warming and wetting climate for the region, we predict that the sediment fluxes in the pristine headwaters of the Tibetan Plateau will continue to increase throughout the 21st century, but the rising sediment fluxes from the Tibetan Plateau would be mostly trapped in its marginal reservoirs.</p><p>Overall, this work has provided the sedimentary evidence of modern climate change through robust observational sediment flux data over multiple decades. It demonstrates that sediment fluxes in pristine cold environments are more sensitive to air temperature and thermal-driven geomorphic processes than to precipitation and pluvial-driven processes. It also provides a guide to assess the relative impacts of human activities and climate change on fluvial sediment flux changes and has significant implications for water resources stakeholders to better design and manage the hydropower dams in a changing climate. Such findings may also have implications for other cold environments such as the Arctic, Antarctic, and other high mountainous basins.</p><p>Furthermore, this research is under the project of "Water and Sediment Fluxes Response to Climate Change in the Headwater Rivers of Asian Highlands" (supported by the IPCC and the Cuomo Foundation) and the project of "Sediment Load Responses to Climate Change in High Mountain Asia" (supported by the Ministry of Education of Singapore). Part of the results are also published in Li et al., 2018 Geomorphology, Li et al., 2020 Geophysical Research Letters, and Li et al., 2021 Water Resources Research.</p>


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1339 ◽  
Author(s):  
Dajiang Yan ◽  
Chang Huang ◽  
Ning Ma ◽  
Yinsheng Zhang

Identifying water and snow cover/glaciers (SCG) accurately is of great importance for monitoring different water resources in the Tibetan Plateau. However, discriminating between water and SCG remains a difficult task because of their similar spectral characteristic according to the physical principles of remote sensing. To efficiently distinguish different kinds of water resources automatically, here we proposed two new indices including: (i) the normalized difference water index with no SCG information (NDWIns) to extract lake water and suppress SCG: and (ii) the normalized difference snow index with no water information (NDSInw) to extract SCG and suppress lake water. Both new water and snow indices were tested in the Tibetan Plateau using Landsat series, showing that the overall accuracies of NDWIns and NDSInw were in the range of 94.6–97.0% and 94.9–97.0% in mapping the lake water from SCG and mapping the SCG from lake water, respectively. Further comparisons suggest that these new two indices improved upon the previous normalized difference snow index/modified normalized difference water index (NDSI/MNDWI) in mapping the water body and SCG. While the present study only focuses on the validation over certain areas in Tibetan Plateau, the newly proposed NDWIns and NDSInw have the potential for better monitoring the lake water and snow/glacier areas over other cold regions around the globe.


2019 ◽  
Vol 12 (6) ◽  
pp. 917-930 ◽  
Author(s):  
Aamir Latif ◽  
Sana Ilyas ◽  
Yangjian Zhang ◽  
Yuqin Xin ◽  
Lin Zhou ◽  
...  

Abstract The Tibetan Plateau (TP) holds fundamental ecological and environmental significances to China and Asia. The TP also lies in the core zone of the belt and road initiative. To protect the TP environment, a comprehensive screening on current ecological research status is entailed. The teased out research gap can also be utilized as guidelines for the recently launched major research programs, i.e. the second TP scientific expedition and silk and belt road research plan. The findings showed that the TP has experienced significant temperature increase at a rate of 0.2°C per decade since 1960s. The most robust warming trend was found in the northern plateau. Precipitation also exhibited an increasing trend but with high spatial heterogeneity. Changing climates have caused a series of environmental consequences, including lake area changes, glacier shrinkage, permafrost degradation and exacerbated desertification. The rising temperature is the main reason behind the glaciers shrinkage, snow melting, permafrost degradation and lake area changes on the TP and neighboring regions. The projected loss of glacial area on the plateau is estimated to be around 43% by 2070 and 75% by the end of the century. Vegetation was responsive to the changed environments, varied climates and intensified human activities by changing phenology and productivity. Future global change study should be more oriented toward integrating various research methods and tools, and synthesizing diverse subjects of water, vegetation, atmosphere and soil.


2021 ◽  
Author(s):  
Xiangde Xu ◽  
Chan Sun ◽  
Deliang Chen ◽  
Tianliang Zhao ◽  
Jianjun Xu ◽  
...  

Abstract. By using the multi-source data of meteorology over recent decades, this study discovered a summertime “hollow wet pool” in the troposphere with a center of high water vapor over Asian water tower (AWT) on the Tibetan Plateau (TP), where is featured by a vertical transport “window” in the troposphere. The water vapor transport in the upper troposphere extends from the vertical transport window over the TP with the significant connections among the Arctic, Antarctic and TP regions, highlighting an effect of TP’s vertical transport window of tropospheric vapor in the “hollow wet pool” on global change. The vertical transport window was built by the AWT’s thermal forcing in associated with the dynamic effect of the TP’s “hollow heat island”. Our study improve the understanding on the vapor transport over the TP with an important implication to global change.


2021 ◽  
Author(s):  
Zhaoyang Liu ◽  
Yanhong Gao

<p>The Tibetan Plateau (TP), known as the "Third Pole" and "Water Tower of Asia", plays an essential role in the regional water cycle and global climate change through its unique topography and abundant water resources. Precipitation is an important part of the hydrological process, but realistically simulating precipitation over the TP is still a major challenge for most models, which hinders our understanding of the strength of the land-atmosphere interaction and its influences on regional, or even global climate and water cycle. In order to better depict precipitation spatial and temporal distributions over the TP, a 4-km convection permitting modelling (CPM) and a 28-km dynamical downscale modelling (DDM) using the weather Research and Forecasting model (WRF) were conducted for a summer (from June to August 2014). WRF simulations are evaluated against CMA in-situ observations, the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE), the Global Precipitation Measurement (GPM), as well as two reanalysis datasets ERA-Interim and ERA5. We focus on the added values of the CPM in summer precipitation simulations, in terms of the spatial seasonal mean precipitation amounts, spatial distributions, and diurnal cycles. We found the six datasets (CPM, DDM, APHRODITE, GPM, ERA-Interim and ERA5) showed great differences in summer precipitation over the TP. The great advantages of CPM and DDM over reanalyses are observed. Slight improvements are found in CPM over DDM as well. Mechanisms for these differences will be explored.</p>


Sign in / Sign up

Export Citation Format

Share Document