scholarly journals How does Casimir energy fall? II. Gravitational acceleration of quantum vacuum energy

2007 ◽  
Vol 40 (35) ◽  
pp. 10935-10943 ◽  
Author(s):  
Kimball A Milton ◽  
Prachi Parashar ◽  
K V Shajesh ◽  
Jef Wagner
2006 ◽  
Vol 21 (37) ◽  
pp. 2827-2831
Author(s):  
A. BHATTACHARYA ◽  
S. N. BANERJEE ◽  
B. CHAKRABARTI ◽  
S. BANERJEE ◽  
S. MANI

The contribution of the cosmological constant to the ground state energy of the quantum vacuum field has been investigated in the framework of the Casimir energy calculation. A regularization scheme is suggested. The equation of state and the nature of the corresponding medium has been studied with some interesting observations.


2014 ◽  
Vol 89 (6) ◽  
Author(s):  
K. A. Milton ◽  
K. V. Shajesh ◽  
S. A. Fulling ◽  
Prachi Parashar

2020 ◽  
Vol 35 (03) ◽  
pp. 2040018 ◽  
Author(s):  
J. M. Muñoz-Castañeda ◽  
M. Bordag ◽  
L. Santamaría-Sanz

We obtain new expressions for the Casimir energy between plates that are mimicked by the most general possible boundary conditions allowed by the principles of quantum field theory. This result enables to provide the quantum vacuum energy for scalar fields propagating under the influence of a one-dimensional crystal represented by a periodic potential formed by an infinite array of identical potentials with compact support.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Muñoz-Castañeda ◽  
L. Santamaría-Sanz ◽  
M. Donaire ◽  
M. Tello-Fraile

Abstract In this paper we study the system of a scalar quantum field confined between two plane, isotropic, and homogeneous parallel plates at thermal equilibrium. We represent the plates by the most general lossless and frequency-independent boundary conditions that satisfy the conditions of isotropy and homogeneity and are compatible with the unitarity of the quantum field theory. Under these conditions we compute the thermal correction to the quantum vacuum energy as a function of the temperature and the parameters encoding the boundary condition. The latter enables us to obtain similar results for the pressure between plates and the quantum thermal correction to the entropy. We find out that our system is thermodynamically stable for any boundary conditions, and we identify a critical temperature below which certain boundary conditions yield attractive, repulsive, and null Casimir forces.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
Author(s):  
Davide Fiscaletti

A nonlinear model of Brownian motion is developed in a three-dimensional quantum vacuum defined by a variable quantum vacuum energy density corresponding to processes of creation/annihilation of virtual particles. In this model, the polarization of the quantum vacuum determined by a perturbative fluctuation of the quantum vacuum energy density associated with a fluctuating viscosity, which mimics the action of dark matter, emerges as the fundamental entity which generates the Brownian motion.


2004 ◽  
Vol 19 (02) ◽  
pp. 111-116 ◽  
Author(s):  
E. ELIZALDE ◽  
A. C. TORT

We re-evaluate the zero point Casimir energy for the case of a massive scalar field in R1×S3 space, allowing also for deviations from the standard conformal value ξ=1/6, by means of zero temperature zeta function techniques. We show that for the problem at hand this approach is equivalent to the high temperature regularization of the vacuum energy, as conjectured in a previous publication. The analytic continuation can be performed in two ways, which are seen to be equivalent.


1981 ◽  
Vol 98 (4) ◽  
pp. 274-276 ◽  
Author(s):  
P.C.W. Davies ◽  
S.D. Unwin
Keyword(s):  

2019 ◽  
Vol 35 (08) ◽  
pp. 2030001
Author(s):  
Dragan Slavkov Hajdukovic

The aim of this brief review is twofold. First, we give an overview of the unprecedented experimental efforts to measure the gravitational acceleration of antimatter; with antihydrogen, in three competing experiments at CERN (AEGIS, ALPHA and GBAR), and with muonium and positronium in other laboratories in the world. Second, we present the 21st Century’s attempts to develop a new model of the Universe with the assumed gravitational repulsion between matter and antimatter; so far, three radically different and incompatible theoretical paradigms have been proposed. Two of these three models, Dirac–Milne Cosmology (that incorporates CPT violation) and the Lattice Universe (based on CPT symmetry), assume a symmetric Universe composed of equal amounts of matter and antimatter, with antimatter somehow “hidden” in cosmic voids; this hypothesis produced encouraging preliminary results. The heart of the third model is the hypothesis that quantum vacuum fluctuations are virtual gravitational dipoles; for the first time, this hypothesis makes possible and inevitable to include the quantum vacuum as a source of gravity. Standard Model matter is considered as the only content of the Universe, while phenomena usually attributed to dark matter and dark energy are explained as the local and global effects of the gravitational polarization of the quantum vacuum by the immersed baryonic matter. An additional feature is that we might live in a cyclic Universe alternatively dominated by matter and antimatter. In about three years, we will know if there is gravitational repulsion between matter and antimatter; a discovery that can forever change our understanding of the Universe.


2006 ◽  
Vol 21 (15) ◽  
pp. 3095-3109 ◽  
Author(s):  
SATOSHI MATSUDA ◽  
SHIGENORI SEKI

We consider a compactification of extra dimensions and numerically calculate Casimir energy which is provided by the mass of Kaluza–Klein modes. For the extra space we consider a torus with shape moduli and show that the corresponding vacuum energy is represented as a function of the moduli parameter of the extra dimensions. By assuming that the Casimir energy may be identified with cosmological constant, we evaluate the size of extra dimensions in terms of the recent data given by the Wilkinson Microwave Anisotropy Probe (WMAP) measurement and the supernovae observations. We suggest that the observed cosmological constant may probe the shape moduli of the extra space by the study of the Casimir energy of the compactified extra dimensions.


2018 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Philip J. Tattersall

Building on the work of others a novel idea is put forward regarding the possible mechanism of gravity as involving energy coupling down the energy gradient of a massive body. Free fall (acceleration) in a gravitational field is explained as arising from an interaction of the modified quantum vacuum energy in the vicinity of matter.


Sign in / Sign up

Export Citation Format

Share Document