thermal correction
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhi-E. Liu ◽  
Jie Zhang ◽  
Shu-Zheng Yang

According to Lorentz-violating theory, the dynamical equation of Dirac particles in the Kinnersley black hole with variably accelerated linear motion is modified. The Hawking quantum tunneling radiation characteristics of Kinnersley black hole are obtained by solving the modified equation. The expression of the Hawking temperature of Kinnersley black hole has been updated.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 80
Author(s):  
Jaroslav Triaskin ◽  
Timur Zalialiutdinov ◽  
Aleksei Anikin ◽  
Dmitrii Solovyev

In the present paper, the correction of the recombination and ionization processes of the hydrogen atom due to the thermal interaction of two charges was considered. The evaluation was based on a rigorous quantum electrodynamic (QED) approach within the framework of perturbation theory. The lowest-order radiative correction to the recombination/ionization cross-section was examined for a wide range of temperatures corresponding to laboratory and astrophysical conditions. The found thermal contribution was discussed both for specific states and for the total recombination and ionization coefficients.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 84
Author(s):  
Kevin Ignatowicz ◽  
François Morency ◽  
Héloïse Beaugendre

The effects of atmospheric icing can be anticipated by Computational Fluid Dynamics (CFD). Past studies show that the convective heat transfer influences the ice accretion and is itself a function of surface roughness. Uncertainty quantification (UQ) could help quantify the impact of surface roughness parameters on the reliability of ice accretion prediction. This paper aims to quantify ice accretion uncertainties and identify the key surface roughness correction parameters contributing the most to the uncertainties in a Reynolds-Averaged Navier-Stokes (RANS) formulation. Ice accretion simulations over a rough flat plate using two thermal correction models are used to construct a RANS database. Non-Intrusive Polynomial Chaos Expansion (NIPCE) metamodels are developed to predict the convective heat transfer and icing characteristics of the RANS database. The metamodels allow for the computation of the 95% confidence intervals of the output probability distribution (PDF) and of the sensitivity indexes of the roughness parameters according to their level of influence on the outputs. For one of the thermal correction models, the most influential parameter is the roughness height, whereas for the second model it is the surface correction coefficient. In addition, the uncertainty on the freestream temperature has a minor impact on the ice accretion sensitivity compared to the uncertainty on the roughness parameters.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 70
Author(s):  
Nail Khusnutdinov ◽  
Natalia Emelianova

We consider the low-temperature expansion of the Casimir-Polder free energy for an atom and graphene by using the Poisson representation of the free energy. We extend our previous analysis on the different relations between chemical potential μ and mass gap parameter m. The key role plays the dependence of graphene conductivities on the μ and m. For simplicity, we made the manifest calculations for zero values of the Fermi velocity. For μ>m, the thermal correction ∼T2, and for μ<m, we confirm the recent result of Klimchitskaya and Mostepanenko, that the thermal correction ∼T5. In the case of exact equality μ=m, the correction ∼T. This point is unstable, and the system falls to the regime with μ>m or μ<m. The analytical calculations are illustrated by numerical evaluations for the Hydrogen atom/graphene system.


2021 ◽  
Vol 43 ◽  
pp. 2490-2497
Author(s):  
N. Chanthima ◽  
J. Kaewkhao ◽  
Y. Tariwong ◽  
N. Kiwsakunkran ◽  
N. Sangwaranatee ◽  
...  
Keyword(s):  

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Muñoz-Castañeda ◽  
L. Santamaría-Sanz ◽  
M. Donaire ◽  
M. Tello-Fraile

Abstract In this paper we study the system of a scalar quantum field confined between two plane, isotropic, and homogeneous parallel plates at thermal equilibrium. We represent the plates by the most general lossless and frequency-independent boundary conditions that satisfy the conditions of isotropy and homogeneity and are compatible with the unitarity of the quantum field theory. Under these conditions we compute the thermal correction to the quantum vacuum energy as a function of the temperature and the parameters encoding the boundary condition. The latter enables us to obtain similar results for the pressure between plates and the quantum thermal correction to the entropy. We find out that our system is thermodynamically stable for any boundary conditions, and we identify a critical temperature below which certain boundary conditions yield attractive, repulsive, and null Casimir forces.


Author(s):  
О. V. Fomin ◽  
О. V. Burlutsky ◽  
M. I. Gorbunov ◽  
О. А. Logvinenko ◽  
А. М. Fomina
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document