scholarly journals Confinement in bilayer graphene via intra- and inter-layer interactions

Author(s):  
Miguel Castillo-Celeita ◽  
Vit Jakubsky ◽  
Kevin Zelaya

Abstract We consider confinement of Dirac fermions in AB-stacked bilayer graphene by inhomogeneous on-site interactions, (pseudo-)magnetic field or inter-layer interaction. Working within the framework of four-band approximation, we focus on the systems where the stationary equation is reducible into two stationary equations with 2x2 Dirac-type Hamiltonians and auxiliary interactions. We show that the localized states are given in terms of solutions of an effective Schrodinger equation with energy-dependent potential. We consider several scenarios where bilayer graphene is subject to inhomogneous (pseudo-)magnetic field, on-site interactions or inter-layer coupling. In explicit examples, we provide analytical solutions for the states localized by local fluctuations or periodicity defects of the interactions.

2013 ◽  
Vol 27 (10) ◽  
pp. 1341003 ◽  
Author(s):  
NEETU AGRAWAL (GARG) ◽  
SANKALPA GHOSH ◽  
MANISH SHARMA

In this review article we discuss the recent progress in studying ballistic transport for charge carriers in graphene through highly inhomogeneous magnetic field known as magnetic barrier in combination with gate voltage induced electrostatic potential. Starting with cases for a single or double magnetic barrier we also review the progress in understanding electron transport through the superlattices created out of such electromagnetic potential barriers and discuss the possibility of experimental realization of such systems. The emphasis is particularly on the analogy of such transport with propagation of light wave through medium with alternating dielectric constant. In that direction we discuss electron analogue of optical phenomena like Fabry–Perot resonances, negative refraction, Goos–Hänchen effect, beam collimation in such systems and explain how such analogy is going to be useful for device generation. The resulting modification of band structure of Dirac fermions, the emergence of additional Dirac points was also discussed accompanied by brief section on the interconvertibility of electric and magnetic field for relativistic Dirac fermions. We also discuss the effect of such electromagnetic potential barrier on bilayer graphene (BLG) in a similar framework.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


Author(s):  
C. Umadevi ◽  
G. Harpriya ◽  
M. Dhange ◽  
G. Nageswari

The flow of blood mixed with copper nanoparticles in an overlapping stenosed artery is reported in the presence of a magnetic field. The presence of stenosis is known to impede blood flow and to be the cause of different cardiac diseases. The governing nonlinear equations are rendered dimensionless and attempted under the conditions of mild stenosis. The analytical solutions for velocity, resistance to the flow, wall shear stress, temperature, and streamlines are obtained and analyzed through graphs. The obtained outcomes show that the temperature variation in copper nanoparticles concentrated blood is more and flow resistance is less when compared to pure blood. The investigations reveal that copper nanoparticles are effective to reduce the hemodynamics of stenosis and could be helpful in biomedical applications.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Paul Eugenio ◽  
Ceren Dag

Strong interactions between electrons occupying bands of opposite (or like) topological quantum numbers (Chern=\pm1=±1), and with flat dispersion, are studied by using lowest Landau level (LLL) wavefunctions. More precisely, we determine the ground states for two scenarios at half-filling: (i) LLL’s with opposite sign of magnetic field, and therefore opposite Chern number; and (ii) LLL’s with the same magnetic field. In the first scenario – which we argue to be a toy model inspired by the chirally symmetric continuum model for twisted bilayer graphene – the opposite Chern LLL’s are Kramer pairs, and thus there exists time-reversal symmetry (\mathbb{Z}_2ℤ2). Turning on repulsive interactions drives the system to spontaneously break time-reversal symmetry – a quantum anomalous Hall state described by one particle per LLL orbital, either all positive Chern |{++\cdots+}\rangle|++⋯+⟩ or all negative |{--\cdots-}\rangle|−−⋯−⟩. If instead, interactions are taken between electrons of like-Chern number, the ground state is an SU(2)SU(2) ferromagnet, with total spin pointing along an arbitrary direction, as with the \nu=1ν=1 spin-\frac{1}{2}12 quantum Hall ferromagnet. The ground states and some of their excitations for both of these scenarios are argued analytically, and further complimented by density matrix renormalization group (DMRG) and exact diagonalization.


Sign in / Sign up

Export Citation Format

Share Document