scholarly journals The Impact of Coral Reefs Destruction and Climate Change in Nusa Dua and Nusa Penida, Bali, Indonesia

Author(s):  
D Susiloningtyas ◽  
T Handayani ◽  
A N Amalia
Author(s):  
Joscelind Lukas ◽  
Darfi Rizkavirwan

The condition of coral reefs in several locations in Indonesia is indeed in critical condition and the impact of damage continues to grow every year. Sunscreen, which is one of the mandatory requirements used for skin protection to prevent sunburn, has dangerous substances oxybenzone and octinoxate, causing unconscious damage. Substances in sunscreens make coral reefs lose their adaptability to climate change which also damages coral reefs and prevents the growth of coral reefs. This topic is important because coral reefs have many ecological, social and economic influences and benefits that are very useful for life. Therefore, it is necessary to design a campaign that is made with the aim that this topic can increase awareness of campaign targets and readers with information that can be accounted for so that the risks of damage to coral reefs can be reduced. This design is carried out through the process of collecting data, formulating strategies, thinking ideas, designing visuals, and applying them to campaigns.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Dakis-Yaoba Ouédraogo ◽  
Mathilde Delaunay ◽  
Romain Sordello ◽  
Laetitia Hédouin ◽  
Magalie Castelin ◽  
...  

Abstract Background Tropical coral reefs cover ca. 0.1% of the Earth’s surface but host an outstanding biodiversity and provide important ecosystem services to millions of people living nearby. They are currently threatened by local stressors (e.g. nutrient enrichment and chemical pollution arising from poor land management, sewage effluents, agriculture, industry) and global stressors (mainly seawater warming and acidification, i.e. climate change). Global and local stressors interact in different ways, but the presence of one stressor often reduces the tolerance to additional stress. While global stressors cannot be mitigated solely by local actions, local stressors can be reduced through ecosystem management, therefore minimizing the impact of climate change on coral reefs. We systematically mapped the evidence of impacts of chemicals arising from anthropogenic activities on tropical reef-building corals, which are the main engineer species of reef ecosystems, to inform decision-makers on the available evidence on this topic. Methods We searched the relevant literature using English terms combined in a tested search string in two publication databases (Scopus and Web Of Science Core Collection). The search string combined terms describing the population (tropical reef-building corals) and the exposure (chemicals). We searched for additional literature through three search engines, three dissertations repositories, 11 specialist websites, and through a call to local stakeholders. Titles, abstracts, and full-texts were successively screened using pre-defined eligibility criteria. A database of all studies included in the map with coded metadata was produced. The evidence was described and knowledge clusters and gaps were identified through the distribution and frequency of studies into types of exposure and/or types of outcomes and/or types of study. Review findings The initial searches identified 23,403 articles which resulted in 15,177 articles after duplicate removal. Among them, 908 articles were retained after screening process, corresponding to 7937 studies (a study being the combination of a taxon, an exposure, and an outcome). Among these studies, 30.5% dealt with the impact of nutrient enrichment on corals while 25% concerned the impact of human activities without reference to a chemical. The most measured outcomes were those related to the chemical concentration in corals (bioaccumulation, 25.8%), to coral physiology (16.9%), cover (14%), and mortality (9%). Half of the studies (48.4%) were experimental—the exposure was controlled by the researchers—and were conducted in laboratory conditions (39.4%) and in situ (9%). The most studied taxa, exposure, and outcomes were different between experimental and observational studies. Conclusions We identified four well-represented subtopics that may be amenable to relevant full syntheses via systematic reviews: (1) evidence on bioaccumulation of chemicals by corals; (2) evidence on the effects of nutrient enrichment on corals; (3) evidence on the effects of human activities on corals; and (4) evidence on the ecotoxicological effects of chemicals on corals (except nutrient enrichment). The systematic map shows that corals in their natural environment can be exposed to many categories of chemicals, and that there is a complete gap in experimental research on the combined effects of more than two categories of chemicals. We therefore encourage research on this topic.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document