scholarly journals Numerical Simulation of Dust Dispersion and Pollution in Breathing Zone of Fully Mechanized Mining Face

Author(s):  
Weijia Cheng ◽  
Xudong Yang ◽  
Xin Wang ◽  
Jun Chen
2020 ◽  
Vol 45 (11) ◽  
pp. 9815-9833
Author(s):  
Guodong Zhai ◽  
Wentao Zhang ◽  
Yaozong Li ◽  
Xinghao Lu ◽  
Wenyuan Hu

AbstractIn order to effectively reduce the coal dust concentration in a fully mechanized mining face, this research used laboratory experiment, numerical simulation, and field test to conduct an in-depth exploration of the ejector precipitator installed at the low-level caving coal hydraulic support. Firstly, through the experimental platform in the laboratory, the dust removal effect of the nozzle with different structural parameters was tested, and the 3D particle dynamic analyzer was adopted to verify its atomization characteristics; then, the structural parameters corresponding to the nozzle in the best test results were obtained. Secondly, by using Fluent, the negative pressure flow field in the ejector barrel was numerically simulated. The results indicated that when the pressure of supply water was 12 MPa, the negative pressure value formed in the flow field was the lowest and the inspiratory velocity was the largest, which was conducive to dust removal. Finally, the tests of liquid–gas ratio and dust removal ratio were carried out in a fully mechanized mining face. The results showed that when the nozzle specification recommended by the experiment and the pressure of supply water recommended by the numerical simulation were used, the removal ratios of the total coal dust and the respirable coal dust were 89.5% and 91.0%, respectively, at the measuring point of the highest coal dust concentration. It indicates that the ejector precipitator has a good application effect in reducing the coal dust concentration in a fully mechanized mining face and improving the work environment of coal mine workers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yalong Li ◽  
Mohanad Ahmed Almalki ◽  
Cheng Li

Abstract For the comprehensive mechanised coal mining technology, the support design of the main withdrawal passage in the working face is an important link to achieve high yield and efficiency. Due to the impact of mining, the roof movement of the withdrawal passage is obvious, the displacement of the coal body will increase significantly, and it is easy to cause roof caving and serious lamination problems, and even lead to collapse accidents, which will affect the normal production of the mine. In this paper, the mining pressure development law of the main withdrawal passage support under the influence of dynamic pressure is designed, the most favourable roof failure form of the withdrawal passage is determined, and the action mechanism and applicable conditions of different mining pressure control measures are studied. The pressure appearance and stress distribution in the final mining stage of fully mechanised coal face are studied by numerical simulation. The deformation and failure characteristics and control measures of roof overburden in the last mining stage of fully mechanised coal face are analysed theoretically. Due to the fact that periodic pressure should be avoided as far as possible after the full-mechanised mining face is connected with the retracement passage, some auxiliary measures such as mining height control and forced roof blasting are put forward on this basis. The relative parameters of the main supporting forms are calculated. The main retracement of a fully mechanised working face in a coal mine channel is put forward to spread the surrounding rock grouting reinforcement, reinforcing roof, and help support and improve the bolt anchoring force, the main design retracement retracement channels in the channel near the return air along the trough for supporting reinforcing surrounding rock control optimisation measures, such as through the numerical simulation analysis, the optimisation measures for coal mine fully mechanised working face of surrounding rock is feasible. Numerical simulation results also show that the surrounding rock control of fully mechanised working face of coal mine design improvements, its main retreat channel under the roof subsidence, cribbing shrank significantly lower, and closer, to better control the deformation of surrounding rock, achieved significant effect, to ensure the safety of coal mine main retracement channel of fully mechanised working face support.


2021 ◽  
Author(s):  
Shijiang Pu ◽  
Gui yi Wu ◽  
Qinzhi Liu ◽  
Yuliang Wang ◽  
Qiang Li ◽  
...  

Abstract When gob-side entry retaining is adopted in mining face with large cutting height, due to large stope space, strong dynamic pressure and other reasons, the filling body is usually broken and unstable due to improper width of filling body, and the stability of surrounding rock of roadway is poor. Therefore, this paper will take Shaqu mine as the engineering background to study the reasonable filling body width of gob-side entry retaining in mining face with large cutting height. Firstly, the stability factors of gob-side entry retaining in mining face with large cutting height are analyzed, and the mechanical model of bearing structure of gob-side entry retaining is established based on the lateral pressure and overlying load of filling body, and the reasonable width of filling body is obtained quantitatively; Numerical simulation is used to analyze the evolution of vertical stress, vertical displacement and plastic zone of working face with the change of filling body width. Finally, combined with the deformation observation results of 24207 gob-side entry retaining roof, two sides and filling body, the rationality of filling body width is verified. The results show that: the setting of the width and strength of the filling body plays an important role in the stability of gob-side entry retaining. According to the mechanical model, the minimum width of the filling body is 2.2m in the lateral direction and 3.9m in the vertical direction; Numerical simulation shows that when the width of filling body is too small, with the increase of filling body width, the vertical stress of filling body increases gradually. When the width of filling body reaches a certain value, the vertical stress decreases with the increase of width, and the stress concentration area will change from symmetrical type to eccentric load type, from the middle of filling body to the side of filling body near gob. If the width of the filling body is too small, the filling body will be too broken to bear the load, resulting in too small vertical stress and too large vertical displacement of the roadway roof. The larger the width of the filling body is, the greater the cutting resistance is, the more timely the side roof of the gob can be cut off, the less the stress of the roadway and the filling body, and the more stable the retained roadway is. Finally, through the observation of 24207 gob-side entry retaining, the total deformation of two sides and roof and floor of roadway tends to be stable after 665mm and 597mm respectively. The roof of roadway does not appear severe subsidence and obvious cracking, and the floor does not appear too large floor heave. The effect of roadway retaining is good, which indicates that 4m support can meet the needs of practical engineering.


Author(s):  
Guozhong Zheng ◽  
Youyin Jing ◽  
Hongxia Huang ◽  
Lijun Shi

During recent years an increasing amount of attention has been paid to air distribution systems with which officer can individually condition the immediate environment of their workstations. Fanger suggested supplying ventilation air that is unmixed with room air, directly to the breathing zone of each occupant. Task conditioning aims to provide each occupant with personalized clean air direct to the breathing zone. Each occupant can control the environment at his/her workplace. Microenvironment of a typical office workplace consisting of movable panel (MP) task conditioning systems was studied by numerical simulation. MP task conditioning systems were operated while a conventional HVAC system supplied air through a diffuser located in the ceiling. Air was exhausted through a ducted ceiling-level grill. Numerical simulation of 3-D turbulent flow (k-ε closure) was separately conducted to study the influence of supply velocity, air blowing distance and size of MP supply outlet on microenvironment. Three task conditioning velocities, 0.6, 0.8 and 1.0m/s, three sizes 0.3×0.15, 0.3×0.1 and 0.25×0.08m and two air blowing distances were studied. In addition to analyzing temperature and velocity distribution, Draught Rating (DR) and Predicted Percentage of Dissatisfied (PPD) of the room and workstation were studied.


2015 ◽  
Vol 63 (1) ◽  
pp. 289-293 ◽  
Author(s):  
Z. Salamonowicz ◽  
M. Kotowski ◽  
M. Półka ◽  
W. Barnat

Abstract The paper presents experimental and numerical validation of the combustion process of coal and flour dust dispersed in a spherical chamber of 20 cubic decimetres volume. The aim of the study is to validate the numerical simulation results in relation to the experimental data obtained on the test stand. To perform the numerical simulations, a Computational Fluid Dynamics code FLUENT was used. Geometry of the computational domain was built in compliance with EN 14460. Numerical simulations were divided into two main steps. The first one consists in a dust dispersion process, where influence of standardized geometry was verified. The second part of numerical simulations investigated dust explosion characteristics in compliance with EN 14034. After several model modifications, outcomes of the numerical analysis shows positive agreement with both, the explosion characteristics for different dust concentration levels and the maximum pressure increase obtained on the test stand.


Sign in / Sign up

Export Citation Format

Share Document