scholarly journals Thermal conductivity of high-performance insulation - a laboratory study. Realistic design values for use in energy-efficient buildings

Author(s):  
Malin Sletnes ◽  
Kristin Elvebakk ◽  
Jørn Emil Gaarder ◽  
Egil Rognvik ◽  
Steinar Grynning
2021 ◽  
Vol 13 (23) ◽  
pp. 13186
Author(s):  
Daniele Ferretti ◽  
Elena Michelini

Among other construction materials, Autoclaved Aerated Concrete (AAC) offers several advantages to face the pressing need to build more sustainable and energy-efficient buildings. From the building side, the low thermal conductivity of AAC allows the realization of energy-efficient building envelopes, with interesting savings in terms of heating and cooling processes. The equilibrium between structural performances (related to safety issues) and energy efficiency requirements is, however, very delicate since it is strictly related to the search for an “optimum” material density. Within this context, this work discusses the results of wide experimental research, showing the dependency of the most important mechanical properties (compressive strength, elastic modulus, flexural strength and fracture energy) from density, as well as the corresponding variation in thermal conductivity. In order to identify the better compromise solution, a sort of eco-mechanical index is also defined. The big challenge for future researches will be the improvement of this eco-mechanical index by working on pore structure and pore distribution within the material without significantly reducing the density and/or by improving the strength of the skeleton material.


2018 ◽  
Vol 203 ◽  
pp. 06021
Author(s):  
Chun On Chin ◽  
Ying Kong Sih

There has been an ever-increasing interest in concrete incorporated with shape-stable phase change material (SSPCM) in recent years for its outstanding thermal performance. In this research, PCM was incorporated into porous lightweight aggregate, namely exfoliated vermiculite to form SSPCM. SSPCMS were integrated with concrete to study their effects on thermal behaviour. Thermal testing was performed using both hot plate and KD2Pro. From the obtained results, it was observed that thermal conductivity and diffusivity reduced by 29% and 63% respectively whereas specific heat capacity increased by 40% with inclusion of SSPCMs. It was concluded that the implementation of SSPCM technology can be seen as a feasible and economical solution for energy efficient buildings.


2015 ◽  
Vol 1 (4) ◽  
pp. 1-12
Author(s):  
Chidadala Janardhan ◽  
◽  
Bhagath Pyda ◽  
J. Manohar ◽  
K. V. Ramanaiah ◽  
...  

Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


Sign in / Sign up

Export Citation Format

Share Document