scholarly journals Mechanical and physical properties of rice straw fiber-reinforced polypropylene composite

Author(s):  
I Ismail ◽  
Ismaturrahmi ◽  
Zakaria ◽  
Zulfalina ◽  
Z Jalil ◽  
...  
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 190
Author(s):  
Nur’ain Wahidah Ya Omar ◽  
Norshah Aizat Shuaib ◽  
Mohd Haidiezul Jamal Ab Hadi ◽  
Azwan Iskandar Azmi ◽  
Muhamad Nur Misbah

Carbon-fiber-reinforced plastic materials have attracted several applications, including the fused deposition modelling (FDM) process. As a cheaper and more environmentally friendly alternative to its virgin counterpart, the use of milled recycled carbon fiber (rCF) has received much attention. The quality of the feed filament is important to avoid filament breakage and clogged nozzles during the FDM printing process. However, information about the effect of material parameters on the mechanical and physical properties of short rCF-reinforced FDM filament is still limited. This paper presents the effect of fiber loading (10 wt%, 20 wt%, and 30 wt%) and fiber size (63 µm, 75 µm, and 150 µm) on the filament’s tensile properties, surface roughness, microstructure, porosity level, density, and water absorptivity. The results show that the addition of 63 µm fibers at 10 wt% loading can enhance filament tensile properties with minimal surface roughness and porosity level. The addition of rCF increased the density and reduced the material’s water intake. This study also indicates a clear trade-off between the optimized properties. Hence, it is recommended that the optimization of rCF should consider the final application of the product. The findings of this study provide a new manufacturing strategy in utilizing milled rCF in potential 3D printing-based applications.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012036
Author(s):  
P Kongkaew ◽  
P Praneekrit ◽  
T Rudchapo ◽  
K Khampui

Abstract In this paper, the study investigates the mechanical and physical properties of water hyacinth and cogon grass fiber reinforced epoxy resin hybrid composites. Hand lay-up technique was used to fabricate the composites. Water absorption, microstructure, tensile properties, flexural properties, and impact strength tests for total fiber contents, 15 wt %, and different water hyacinth and cogon grass fiber ratios (10/0, 8/2, 6/4, 4/6, 2/8, and 0/10) were used to evaluate the investigation’s effects. The addition of water hyacinth and cogon grass fiber into epoxy improves tensile, flexural, and impact properties while decreasing water absorption, according to the findings. Using a scanning electron microscope (SEM), the microstructure of the composites was analyzed, and surface fracture behavior and the void between the fiber and matrix were observed.


Sign in / Sign up

Export Citation Format

Share Document